<table>
<thead>
<tr>
<th>Title</th>
<th>A transfer learning approach to goodness of pronunciation based automatic mispronunciation detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Huang, Hao; Xu, Haihua; Hu, Ying; Zhou, Gang</td>
</tr>
<tr>
<td>Date</td>
<td>2017</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/44162</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017 Acoustical Society of America. This paper was published in Journal of the Acoustical Society of America and is made available as an electronic reprint (preprint) with permission of Acoustical Society of America. The published version is available at: [http://dx.doi.org/10.1121/1.5011159]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
A transfer learning approach to goodness of pronunciation based automatic mispronunciation detection

Hao Huang,1,a) Haihua Xu,2 Ying Hu,1 and Gang Zhou1

1School of Information Science and Engineering, Xinjiang University, Shangli Road, Urumqi 830046, China
2Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore

(Received 16 February 2017; revised 2 October 2017; accepted 27 October 2017; published online 21 November 2017)

Goodness of pronunciation (GOP) is the most widely used method for automatic mispronunciation detection. In this paper, a transfer learning approach to GOP based mispronunciation detection when applying maximum F1-score criterion (MFC) training to deep neural network (DNN)-hidden Markov model based acoustic models is proposed. Rather than train the whole network using MFC, a DNN is used, whose hidden layers are borrowed from native speech recognition with only the softmax layer trained according to the MFC objective function. As a result, significant mispronunciation detection improvement is obtained. In light of this, the two-stage transfer learning based GOP is investigated in depth. The first stage exploits the hidden layer(s) to extract phonetic-discriminating features. The second stage uses a trainable softmax layer to learn the human standard for judgment. The validation is carried out by experimenting with different mispronunciation detection architectures using acoustic models trained by different criteria. It is found that it is preferable to use frame-level cross-entropy to train the hidden layer parameters. Classifier based mispronunciation detection is further experimented with using features computed by transfer learning based GOP and it is shown that it also helps to achieve better results.

© 2017 Acoustical Society of America. https://doi.org/10.1121/1.5011159

I. INTRODUCTION

With the accelerating process of globalization and development of computing technology, computer assisted language learning (CALL) that makes use of speech and language technologies to facilitate second-language learning has gained a growing interest over the last two decades. Computer assisted pronunciation training, which provides opportunities for learners practicing their pronunciation and gives automatic feedback, is one of the most popularly deployed applications. Generally, there are two kinds of pronunciation feedbacks. One is to give learners pronunciation scores.1–6 The other is to help a language learner by pinpointing erroneous pronunciations, which is often referred to as automatic mispronunciation detection. Research on automatic mispronunciation detection has been comprehensively carried out at the phone-level,7–14 word-level,15,16 and phrase-level.17 In addition, some studies extend the detection task to mispronunciation diagnosis, which identifies the type of incorrect phone(s) produced in place of the canonical phone to provide more useful feedback for the learner.18,19

For automatic mispronunciation detection, there has been a great deal of research work and lots of methods have been proposed. They range from confidence based methods,6–9 classifier based methods,10–12 and continuous speech recognition based methods.13,14,18 Among them, the goodness of pronunciation (GOP)8 based method, which can be regarded as a confidence measure based approach, is the most widely used. The classifier based mispronunciation detection approach uses manually designed mispronunciation detection features as front-end and statistical classifiers such as support vector machine (SVM) or neural network logistic regression (NNLR) classifier as the back-end to make the final decision.10–12 The continuous speech recognition based method uses a phone recognizer to decode the input waveforms to find out the possible errors.13,14,18,19

In early research on GOP based mispronunciation detection, Gaussian mixture model–hidden Markov models (GMM-HMMs) were used as the acoustic models to compute the GOP scores. Traditionally, the GMM-HMMs are trained by maximum likelihood (ML) criterion. The ML criterion is an objective function in the automatic speech recognition (ASR) task that seeks to maximize the joint likelihood of data as well as its label. In ASR, the performance of a system is often evaluated in terms of word error rate (WER). Discriminative training (DT) of the acoustic models were used to reduce WER. The most commonly used discriminative training methods include minimum classification error,20 maximum mutual information (MMI),21,22 and minimum phone error (MPE).23,24

By contrast to the task of speech recognition, mispronunciation detection task concerns about evaluation metrics different from WER. The commonly used metrics include false rejection (FR) (correct pronunciations detected as incorrect), false acceptances (FA) (errors detected as correct), true acceptance (TA) (correct pronunciations detected as correct), and true rejection (TR) (errors detected as incorrect). Some works use precision and recall (or precision and

14Electronic mail: hwanghao@gmail.com
HMMs in GOP based mispronunciation detection.\cite{4,12} has shown better detection results than ML trained GMMs\cite{32} that DNN can be trained with sequence performance. For DNN based acoustic models, it was demonstrated that the proposed method had significantly improved detection results over the ML trained GMM-HMM based acoustic models.

Recently, progress in deep learning for ASR (Ref.\cite{27}) triggered a lot of work on applying a deep neural network (DNN) to CALL system.\cite{4,5,11,12,18,28-30} DNN acoustic models has shown better detection results than ML trained GMM-HMMs in GOP based mispronunciation detection.\cite{4,12} Normally, the DNN parameters are initialized using generative pretraining and then fine-tuned under the cross-entropy (CE) criterion. However, the CE minimization objective is also used for reducing WER and is not directly linked to the optimization of mispronunciation detection performance. As claimed in Ref.\cite{26}, the problem on how the golden standard could be incorporated in supervised training of the DNN still remains.

Most recently, both our work and the results by Hsu\cite{31} showed that applying the MFC objective function to supervised training of DNN based acoustic models yields better mispronunciation detection performance. In this paper, we propose transfer learning based GOP, in which the hidden layers are borrowed for DNN trained by CE objective function on native speech data and only the top softmax layer of the network is trained by MFC. Results show detection performance can be significantly improved and MFC training of the top softmax layer is more robust to over-training than MFC training of the whole network. In light of this, we bare the thought that GOP based mispronunciation detection can be fundamentally separated into a two-stage based transfer learning framework: The first stage uses DNN (or GMM) based hidden layers borrowed from acoustic models trained for native speech recognition to discriminate the standard (native) pronunciations in the acoustic space. The second stage uses a trainable softmax layer to approximate the golden standard of a human expert.

For the first stage, a question is, what is an appropriate criterion for training the hidden-layer acoustic models? Inconsistent with our intuition, results presented in our previous work\cite{26} showed that for GMM-HMM based acoustic models, MPE and MMI training aiming at reducing WER for speech recognition did not clearly lead to better detection performance. For DNN based acoustic models, it was demonstrated in Ref.\cite{32} that DNN can be trained with sequence classification criteria named the state-level minimum Bayesian risk (sMBR) which uses exactly the same lattice-based methods that have been developed for GMM-HMMs (MPE) to improve speech recognition performance. However, it was shown in Ref.\cite{31} that while sMBR can considerably improve the ASR performance, it did not provide additional gain in mispronunciation detection that employs the CE estimated DNN acoustic models. By comparing the mispronunciation detection results among different models trained by a variety of training criteria, we found those DNN models which have lower frame-level CE objective function achieve better detection performance. To further verify this idea, we present detection results using minimum CE training of the GMM-HMMs, i.e., increasing the log posterior probability of the reference senone label. We found GMM-HMM based acoustic models with better CE criterion (or generally speaking, high frame-level senone classification accuracy) obtain better mispronunciation detection results.

For the second-stage, we use a trainable softmax layer instead of simple phone-dependent thresholds in conventional GOP to learn complex human standard of judgment. The softmax layer takes scores output by DNN as inputs, and generates senone posterior probabilities to compute GOP scores. The softmax layer in this paper is trained by the MFC objective function,\cite{25,26} which is more suitable for the case when only imbalanced training data are available.

The transfer learning based GOP is further experimented with by using subtly designed experiments: We extend the conventional GOP framework using GMM-HMM acoustic models to transfer learning based GOP, which utilizes GMMs as the hidden layer and a trainable softmax layer as the output layer. Experimental results show the transfer learning based GOP also outperforms the conventional GOP using GMM-HMMs. Transferring from CE trained GMM-HMMs obtains better results than from conventional ASR training criteria such as ML/MPE/MMI in transfer learning based GOP.

In the final part of the experiments, we evaluate mispronunciation detection results using DNN-HMM acoustic models with/without MFC training for NNLR classifier based mispronunciation detection. It is shown MFC training of the softmax layer of the DNN also helps to achieve better results for classifier based mispronunciation detection. We hope this work also serves as a comparison study of mispronunciation detection task with different acoustic models under various training criteria. Our major contributions include the following.

- We propose to use transfer learning based GOP, in which the hidden layers of the DNN are borrowed from native speech recognition and while the softmax layer is trained by task-dependent objective function (MFC). We demonstrate that the hidden layers originally built for speech recognizer are transferable to mispronunciation detection task and transfer learning based GOP can improve the F1-score and shows to be more robust to over-training than MFC training of the whole network parameters.
- The conventional GOP based mispronunciation detection is explored as a two-stage based transfer learning framework: The first stage uses hidden layer(s) to discriminating pronunciations in the acoustical space and the second stage uses a trainable softmax layer to learn the golden standard of a human expert to make the final decision. For the hidden layer that extracting features for phonetic discrimination, we found it is preferable to use cross-entropy minimization as the objective function to train both the DNN-HMM and GMM-HMM acoustic models rather than sequential classification criteria such as MPE and MMI.
- We design and carry out a series of thorough experiments to evaluate various acoustic models (GMM-HMM, DNN-
HMM) trained by a variety of training criteria (MPE, MMI, and CE minimization) under the conventional GOP and the transfer learning based GOP frameworks. Detection results using NNLR classifier based mispronunciation detection are presented as well. These are hopeful to provide as a full investigation of the existing mispronunciation detection models, frameworks and training criteria.

The remainder of this paper is organized as follows. Section II briefly reviews the GOP based mispronunciation detection method using GMM-HMMs and DNN-HMMs. Section III describes the traditional training criteria in acoustic modeling and introduces the MFC objective function. The corresponding derivatives for network parameter update are presented as well. In Sec. IV the experimental evaluations and detailed analysis on the results are described. Section V draws the conclusion of this study.

II. GOP BASED MISPRONUNCIATION DETECTION

A. GOP based framework using GMM-HMMs

The task of mispronunciation detection is to verify whether a pronunciation is correct or not. For phone-level mispronunciation detection, GOP (Ref. 8) is a commonly used quantitative score to measure the quality of a pronunciation. Given a set of speech utterances, let O_n be the acoustic observations of the nth phonetic segment and q_n the canonical phone label of the segment, the GOP score of segment n is calculated as log phone posterior of the canonical phone q_n:

$$\text{GOP}(O_n, q_n) = \frac{1}{T_n} \log \frac{p(O_n|q_n)P(q_n)}{\sum_{q\in Q(n)} p(O_n|q)P(q)},$$

where T_n is the duration (in frames) of the segment and $Q(n)$ represents all the possible pronunciations. q_n is the canonical pronunciation. $p(O|q)$ is the observation probability of model q that can be computed by using a forward-backward pass. $P(q)$ is the prior of phone q. After the GOP score has been calculated, a threshold (or bias) b is applied to make the final decision,

$$\text{GOP}(O_n, q_n) > b \left\{ \begin{array}{ll} \text{yes, correct pronunciation,} \\ \text{no, mispronunciation.} \end{array} \right.$$

The GMM-HMM based acoustic models are often trained with maximum likelihood (ML) criterion. In Refs. 25 and 26, it was shown that MFC training of the GMM-HMM based acoustic models achieved significant mispronunciation detection improvement.

B. GOP based framework using DNN-HMMs

Figure 1 shows the schematic diagram of GOP based framework using DNN-HMM based acoustic models. A deep neural network is a feed-forward, artificial neural network that has more than one layer of hidden units between its inputs and its outputs. 27 Given the input observation o_t, of frame t, the network is a nonlinear function of o_t using a sequence of L layers (hidden plus output) and the top softmax layer of the DNN (denoted as the Lth layer) directly outputs the posterior probability of a HMM state (senone) s by using the softmax non-linearity

$$p(s|o_t) = \frac{\exp(z_{t,s}^L)}{\sum_{s'=1}^{S} \exp(z_{t,s'}^L)},$$

where $z_{t,s}^L$ is the sth output by the affine transform in the softmax layer (the Lth layer) given o_t, as the neural network input, and S the total number of HMM states (senones). Let s_t denote the senone label of frame t generated by forced alignment, the GOP score of q_n in (1) is the time normalized log phone posterior (LPP) of q_n, and can be approximated by 12

$$G(n) = \text{LPP}(q_n|O_n) = \frac{1}{T_n} \log P(q_n|O_n)$$

$$\approx \frac{1}{T_n} \sum_{t=1}^{t_n} \log p(s_t|o_t),$$

where $t_s(n)$ and $t_e(n)$ stand for the initial frame and the last frame of segment n, o_t represents the input observations of the frame t, and s_t is the senone label of the frame t generated by force alignment with the given canonical phone q_n. An advantage of this GOP computation is that it avoids forward-backward computations needed by Eq. (1). If we use Eq. (4), a discriminant function for error detection can be defined as

$$d(n) = -G(n) + b.$$

It can be seen that $d(n) > 0$ is interpreted as erroneous and $d(n) < 0$ as correct. Hence the posterior probability of being a mispronunciation is

$$y_n = p(\text{error}|O_n) = \sigma(d(n)),$$

![Fig. 1. (Color online) GOP based mispronunciation detection using DNN.](image-url)
Automatic mispronunciation detection can be viewed as a binary classification task. A phone segment can be classified as either a correct or erroneous pronunciation by the system. Accuracy, the number of correctly classified phone segments was used as an evaluation metric in Refs. 12 and 14 and can be computed as

$$\text{Accuracy} = \frac{N_{TA} + N_{TR}}{N} \times 100\%,$$

(10)

where N_{TA} is the number of TA and N_{TR} is the number of TR. A possible function used for maximizing this training target can be achieved by maximizing the likelihood as in Ref. 12,

$$\mathcal{L} = \prod_{n=1}^{N} y_n^t (1 - y_n)^{1-t},$$

(11)

where t_n is the human-annotated result of segment n. $t_n = 1$ is for mispronunciation and 0 otherwise. The optimization can be achieved by minimizing the negative logarithm of the likelihood function.

Optimization of Eq. (12) can be viewed as to improve the binary classification accuracy. However, using classification accuracy as the training target is only good for symmetric (balanced) data sets. Mispronunciation detection often faces the standard problems that are caused by an imbalanced distribution of classes in the corpus. The amount of phones labeled as errors by human annotators is often extremely small in relation to the overall number of phones. In this case, when optimizing Eq. (12), the gradient based optimization tends to simply tune the threshold (bias in LR) and mark all the phone realizations as correct, which leads to the problem of accuracy paradox. Therefore, Eq. (12) is not an appropriate training criterion for imbalanced data.

C. Maximum F1-score criterion

For binary classification task on imbalanced data, a variety of performance evaluation metrics have been proposed such as F1-score, Cohen’s κ, ROC (receiver operating characteristic), AUC (area under curve), etc. For information retrieval, F1-score, the harmonic mean of precision and recall, is a widely used performance metric, particularly for tasks with imbalanced data sets. F-measure maximizing has been widely discussed in machine learning research community. According to Ref. 36, a variety of methods have been proposed for optimizing F-measures, which generally fall into two paradigms, the decision theoretic analysis (DTA) and empirical utility maximization (EUM).

The DTA approach aims at learning a probabilistic model and then predicts labels that maximizes the expected value of the chosen F-measure. The EUM approach aims at training a classifier that maximizes the F-measure on a labeled training set. Due to the high computational complexity in DTA based approaches, the EUM based methods are more popular. In EUM based methods, optimizing the F-measure directly is often difficult as the F-measure is non-convex. Thus, approximation methods are often used instead. Reference 38 gave an efficient algorithm for maximizing a convex lower bound of F-measures for SVMs, and showed it worked well on text classification task. Reference 39 gave an efficient algorithm to maximize a non-convex approximation to F-measures using logistic regression models, and showed it works well on a text summarization problem. More discussions about the two approaches to F-measure maximization can be found in Ref. 36.
In Refs. 25 and 26, we proposed to use the MFC objective function for GMM-HMM based acoustic models, aiming at maximizing F1-score, hence simultaneously improving precision, recall and accuracy. The objective function was similar to that originally proposed in Ref. 39 for logistic regression based classifier on text classification task, while in Refs. 25 and 26 we optimize the GMM-HMM parameters using extended Baum-Welch algorithms for mispronunciation detection task. Our method can be regarded as an EUM based approach. Though simple, the method has been found to be effective and is convenient to implement. The following section describes the MFC objective function and derives the training algorithm of the DNN parameters.

1. The MFC objective function

After the GOP scores of all the phonemes in the utterances are calculated and the mispronunciations are detected according to Eqs. (1) and (2), F1-score can be computed to evaluate the performance of the system based on the detection results of the machine and the annotations of a human evaluator. F1-score is the harmonic mean of precision and recall computed from the number of mispronunciations detected by both the computer and human evaluator, defined as

\[
F1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]

and

\[
\text{Precision} = \frac{N_{WW}}{N_D} \times 100%,
\]

\[
\text{Recall} = \frac{N_{WW}}{N_W} \times 100%.
\]

\(N_{WW}\) is the number of phones marked as mispronunciations by both the computer and human evaluator. \(N_D\) is the total number of mispronunciations detected by the machine, \(N_W\) is the number of mispronunciations judged by the human evaluator. By replacing precision and recall in Eq. (13) with Eqs. (14) and (15), F1-score can be rewritten as

\[
F1 = \frac{2N_{WW}}{N_D + N_W}.
\]

Let \(I(\cdot)\) be the step indicator function. In terms of the GOP based error decision rule in Eq. (2), \(N_{WW}\) and \(N_D\) can be expressed as

\[
N_{WW} = \sum_{n=1}^{N} I(d(n))t_n,
\]

\[
N_D = \sum_{n=1}^{N} I(d(n)),
\]

\[
N_W = \sum_{n=1}^{N} t_n,
\]

where \(t_n\) is the human-annotated result of segment \(n\). \(t_n = 1\) when segment \(n\) is marked as mispronunciation and 0 otherwise. Because of the step indicator function in Eqs. (17) and (18), F1-score is not differentiable, which makes it difficult to optimize F1-score by using gradient based methods. To surpass this problem, we can use the sigmoid function to transform the step indicator function \(I(\cdot)\) into a continuous function. By replacing the indicator function \(I(\cdot)\) with \(\sigma(\cdot)\) in Eqs. (17) and (18), the smoothed number of errors marked by both the machine and human annotator can be

\[
N_{WW}^S = \sum_{n=1}^{N} \sigma(d(n))t_n.
\]

Similarly, the smoothed number of errors detected by the machine can be

\[
N_D^S = \sum_{n=1}^{N} \sigma(d(n)).
\]

By replacing \(N_{WW}\) and \(N_D\) with \(N_{WW}^S\) and \(N_D^S\) in F1-score computation (16), we obtain a smooth form of F1-score, denoted as the maximum F1-score criterion (MFC), which can be written as follows:

\[
F_{MFC} = \frac{2N_{WW}^S}{N_D^S + N_W^S}
\]

\[
= \frac{2 \sum_{n=1}^{N} \sigma(d(n))t_n}{\sum_{n=1}^{N} \sigma(d(n)) + N_W^S}.
\]

From the equation we can see, as \(N_W\) remains fixed given the human-annotation results, the MFC objective function can be maximized by simultaneously increasing \(N_{WW}^S\) and decreasing \(N_D^S\).

2. MFC training of the deep neural network

When gradient based method is used for DNN optimization, the derivatives of \(F_{MFC}\) with respect to the neural network weights are needed. We only provide the derivative of \(F_{MFC}\) with respect to the affine transform \(W_L\) in the top softmax layer (the \(Lth\) layer of the network). Given the augmented input \(o_i\) at time \(t\), let \(z^L_t\) be the output of affine transform in the top softmax layer, the derivatives of the objective function \(F_{MFC}\) with respect to the \(s\)-th element of \(z^L_t\) is

\[
\frac{\partial F_{MFC}}{\partial z^L_{t,s}} = \frac{2N_{WW}^S}{N_D^S + N_W^S} \frac{\partial N_{WW}^S}{\partial z^L_{t,s}} - \frac{2N_{WW}^S}{(N_D^S + N_W^S)^2} \frac{\partial N_D^S}{\partial z^L_{t,s}},
\]

where

\[
\frac{\partial N_{WW}^S}{\partial z^L_{t,s}} = \sigma'(d(n)) \frac{\partial d(n)}{\partial z^L_{t,s}} t_n,
\]

\[
\frac{\partial N_D^S}{\partial z^L_{t,s}} = \sigma'(d(n)) \frac{\partial d(n)}{\partial z^L_{t,s}}.
\]
In Eqs. (25) and (26), \(\sigma'(u) = \sigma(u)(1 - \sigma(u)) \) and

\[
\frac{\partial d(n)}{\partial z_{t,s}} = \frac{1}{T_n} \left(p(s/o_t) - A(s, s_t) \right).
\]

(27)

\(A(s, s_t) \) is the “ senone accuracy” of state \(s \) and is equal to 1 when \(s \) and the aligned label \(s_t \) are the same, and 0 otherwise. \(p(s/o_t) \) is the senone posterior in Eq. (3). The derivative of \(F_{MFC} \) with respect to \(W_t \) in segment \(n \) is

\[
\frac{\partial F_{MFC}}{\partial W_{L_t}} = \sum_{t'=t(n)} \frac{\partial F_{MFC}}{\partial z_{t'}} (a_{t'-1}^L)^	op,
\]

(28)

where \(a_{t'-1}^L \) is the output of the layer prior to the softmax layer at time \(t \). The derivative of \(F_{MFC} \) with respect to the deeper layer weights can be computed according to the chain rule.

3. Transfer learning based GOP Using DNN

In MFC training of the DNN, rather than train the whole DNN parameters, we can train only the softmax layer of the network and keep the hidden layers fixed. This can be viewed as a transfer learning based GOP, in which the hidden layers are borrowed from speech recognizer while the softmax layers are trained by MFC for mispronunciation detection. The GOP based mispronunciation detection framework using transfer learning based GOP is depicted in Fig. 2(a).

IV. EXPERIMENTS AND RESULTS

A. Databases

The proposed method is evaluated on a mispronunciation detection task for Uighur college students who had been learning Mandarin Chinese in Xinjiang University. Two databases are used.

(1) The L1 database is the “863 project” Mandarin speech database uttered by native Mandarin speakers, which is a corpus for continuous speech recognition collected for the Chinese National “863 Project.” It has a total of about 110-h recordings spoken by 160 speakers (80 females and 80 males). The database contains 92,243 utterances. In our experiments, 86,271 utterances are selected as the L1 training set, the rest are used for evaluating speech recognition performance of the acoustic models.

(2) L2 database is a non-native speech corpus, containing mandarin speech uttered by 100 Uighur speakers (50 male and 50 female). Each speaker was asked to read three sets of prompted texts. Each set contains 50 single Chinese characters, 25 words and 20 short sentences. The database has been annotated by two expert phoneticians (annotator A and annotator B). The annotation efforts involved pinpointing phone-level mispronunciations and tonal errors at the syllable level. At the sentence level, the two annotators also provided three mean opinion scores (MOS) indicating the correctness of pronunciations, speaking fluency and prosody of the utterance. After cleaning, the database contains about 14.1 h of speech, 25,673 utterances. 18,643 utterances of the database are used as the L2 training set and 7030 are used for mispronunciation detection evaluation (L2 test set). Table I shows the four subsets of the data.

Table II shows the annotation results on the L2 corpus by the two phoneticians. It can be seen that the Uighur speakers are more likely to produce tonal errors. In this paper, we focus only on the phone-level mispronunciations without consideration of tonal error detection, which normally belongs to another separate research topic. To compare the machine-human results with the human-human performance, the inter-annotator agreement results for the pronunciation error annotations are also listed. By assuming annotator A as the golden standard, the detection results of annotator B against annotator A are presented in Table III. In Table III, the inter-rater agreement is also measured by Cohen’s kappa coefficient (\(\kappa \)).

B. Configurations and results

Mispronunciation detection results with various acoustic models (GMM-HMMs, DNN-HMMs) trained by different objective functions in different mispronunciation detection frameworks (conventional GOP, transfer learning based GOP and classifier based method) are shown in this section. Precision, Recall and F1-score are used as performance evaluation metrics. The detections results are also presented in terms of FR, FA, TA, TR, classification accuracy, and Cohen’s \(\kappa \).

<table>
<thead>
<tr>
<th>Data set</th>
<th>Duration</th>
<th># utterances</th>
<th># phones</th>
<th># errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Training</td>
<td>100.6 h</td>
<td>86271</td>
<td>2095K</td>
<td>NA</td>
</tr>
<tr>
<td>L1 Testing</td>
<td>6.9 h</td>
<td>5972</td>
<td>142K</td>
<td>NA</td>
</tr>
<tr>
<td>L2 Training</td>
<td>10.0 h</td>
<td>18643</td>
<td>98174</td>
<td>3077</td>
</tr>
<tr>
<td>L2 Testing</td>
<td>4.1 h</td>
<td>7030</td>
<td>39668</td>
<td>1022</td>
</tr>
</tbody>
</table>
1. Conventional GOP using DNN-HMMs

a. CE training on the L1 dataset. For DNN based acoustic models, we use a network with 5 hidden layers and 1024 units per layer and sigmoid activation. The spectral front-end uses a 39-dimensional vector, consisting of 13 MFCCs and their Δ and ΔΔ with mean normalization. The HMM set has 67 phones (28 initials and 37 finals plus silence and short pause). The input feature of the DNN has a dimension of 429 by concatenating a context of 5 frames left and right of the current frame (11 frames in total). The output of the softmax layer has a dimension of 205, which represents the posterior probabilities of context-independent HMM states (senones).

First the DNN is trained using a standard speech recognition recipe: The weights and biases of hidden layers are initialized with stacked restricted Boltzman machines (RBMs)\(^{27}\) using the Kaldi toolkit\(^{42}\) on the L1 training set. Then a softmax layer is added on the top of the network and the DNN parameters are fine-tuned according to CE minimization on the L1 training set. Table IV shows the MFC objective function \(F_{MFC}\) and mispronunciation detection results on both the L2 training set and testing set by training different layer(s) of the DNN using different criteria. In addition to mispronunciation detection, we carried out syllable output speech recognition experiments to evaluate recognition performance of the acoustic models. Language model is removed from decoding process to obtain a good evaluation of the acoustic resolution. Speech recognition performance in terms of syllable error rate (SER) using the corresponding models are presented in Table V.

Before detecting mispronunciations using the DNN based acoustic models, we need to obtain the optimal phone thresholds. According to the discussion in Sec. II B, the thresholds can be optimized using gradient based method along with the network parameters. In this paper, we first compute the GOP scores on all the L2 training set using Eq. (4) and then tune the phone-dependent thresholds according to MFC using grid search adopted in Ref. 25. Finally the mispronunciations are detected on the L2 test set. Using the DNN of which the hidden layers and the softmax layer are all trained by CE minimization on the L1 training set (denoted as CE\(_{L1}\) for the hidden and CE\(_{L1}\) for the softmax in Table IV), the F1-score on the L2 test set is 45.4%.

b. DBN based hidden-layer. Table IV then presents mispronunciation detection results using a DNN of which the softmax layer trained by CE minimization on the L1 training set (denoted as CE\(_{L1}\)) while the hidden layer are deep belief network (DBN) composed of a stack of RBMs trained in an unsupervised manner on the L1 training set (DBN\(_{L1}\)). For speech recognition, it is shown in Table V that DNN with DBN\(_{L1}\) hidden layers and CE\(_{L1}\) softmax layer yields inferior SER than DNN with CE\(_{L1}\) trained hidden layers and softmax layer. For mispronunciation detection, it is also observed that DNN with DBN\(_{L1}\) hidden layers and CE\(_{L1}\) softmax layer obtains lower F1-score than DNN with CE\(_{L1}\) trained hidden layers and softmax layer. These results indicate the features extracted by supervised training on native (L1) speech data are more discriminative and benefit both L1 speech recognition and L2 mispronunciation detection. The output by L1 phonetically-aware hidden layers shows better in mispronunciation detection task than unsupervised derived features output by DBN.

c. sMBR training. Based on the fact that GMM-HMM based speech recognition systems are often discriminatively trained using sequence-based criteria, such as MPE (Ref. 23) or MMI (Ref. 22) that are more directly related to recognition

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidden</td>
<td>Softmax</td>
<td>L1</td>
</tr>
<tr>
<td>CE(_{L1})</td>
<td>CE(_{L1})</td>
<td>6.6</td>
</tr>
<tr>
<td>DBN(_{L1})</td>
<td>CE(_{L1})</td>
<td>24.2</td>
</tr>
<tr>
<td>sMBR(_{L1})</td>
<td>sMBR(_{L1})</td>
<td>5.5</td>
</tr>
<tr>
<td>MFC(_{L2})</td>
<td>MFC(_{L2})</td>
<td>49.2</td>
</tr>
<tr>
<td>CE(_{L2})</td>
<td>CE(_{L2})</td>
<td>48.4</td>
</tr>
<tr>
<td>MFC(_{L2})</td>
<td>MFC(_{L2})</td>
<td>63.8</td>
</tr>
<tr>
<td>CE(_{L1})</td>
<td>MFC(_{L2})</td>
<td>15.7</td>
</tr>
<tr>
<td>DBN(_{L1})</td>
<td>MFC(_{L2})</td>
<td>61.3</td>
</tr>
<tr>
<td>sMBR(_{L1})</td>
<td>MFC(_{L2})</td>
<td>12.1</td>
</tr>
<tr>
<td>CE(_{L2})</td>
<td>MFC(_{L2})</td>
<td>56.7</td>
</tr>
</tbody>
</table>

J. Acoust. Soc. Am. 142 (5), November 2017

Huang et al. 3171
accuracy, DNN based acoustic models can be trained with sequence classification criteria using exactly the same lattice-based methods and shows considerably better performance.\(^{32}\) It is seen in Table V that sMBR training of the DNN has yielded better speech recognition result. The sMBR trained DNN is then used for detecting mispronunciations using conventional GOP method. Mispronunciation detection results using sMBR trained DNN are reported in Table IV. By comparing the detection results of sMBR\(_{L1}\) with CE minimization on the L2 training set (CEL2 for the hidden layers in the L1 data trained DNN can be viewed as a transfer learning approach with hidden layers borrowed from L1 speech recognition task. Mispronunciation detection task utilizes feature representations output by the hidden layers trained for L1 ASR while the softmax layers are discriminatively fine-tuned by task-dependent criteria. The results indicate that the feature transformation represented by the hidden layers in the L1 data trained DNN can be effectively transferred to detect mispronunciations in L2 speech.

2. Transfer learning based GOP using DNN-HMMs

a. MFC training of all layers

From the DNN with all layers trained by CE on L1 training set, we conduct MFC training of all the layers. The MFC training procedure is an iterative training process using gradient ascent according to derivative in Eqs. (24)–(28), which can be summarized as follows.

1. Initialize the DNN based acoustic models;
2. Iterative MFC training:
 1. Compute the GOP scores of all the phone segments in the L2 training set;
 2. Search for the phone-dependent thresholds \(b\) that maximize \(F_{\text{MFC}}\) on the L2 training set;
 3. Compute \(N^W_{\text{FW}}\) and \(N^D_{\text{FD}}\) using the GOP scores and thresholds obtained in 2(a) and 2(b);
 4. Compute the derivatives of \(F_{\text{MFC}}\) with respect to the corresponding layer (softmax layer, hidden layers) parameters of the DNN according to Eqs. (24)–(28);
 5. Update the network parameters;
 6. Goto step 2(a) unless convergence or maximum number of iterations is reached.

In our implementation, the errors are back-propagated after each training phone-segment. Strictly, \(N^W_{\text{FW}}\) and \(N^D_{\text{FD}}\) should be recalculated whenever the network parameters are changed. So, it is time consuming when the batch-size is small. In this work, we re-calculated \(N^W\) and \(N^D\) only after a training epoch on the entire data set. Based on the fact that \(N^W\) and \(N^D\) do not change too much in each training epoch, this implementation shows to work well in practice.

As for the results of MFC training, it is found MFC training of all the layers (both the hidden layers and the softmax layer) are trained by MFC on the L2 training set, denoted as MFC\(_{L2}\) (MFC\(_{L2}\)). Instead of training all the layers by MFC, we tune only the affine transform in the softmax layer according to MFC (CE\(_{L1}\) for the hidden layers and MFC\(_{L2}\) for the softmax). An F1-score of 53.6% is achieved, significantly (\(p < 0.001\)) better than conventional GOP based method using CE\(_{L1}\) trained DNN (F1 = 45.4%) and the DNN with all layers trained by MFC (F1 = 49.9%), with only a moderate improvement of \(F_{\text{MFC}}\). Since the hidden layers are remain fixed, this approach can be viewed as a transfer learning approach with hidden layers borrowed from L1 speech recognition task. Mispronunciation detection task utilizes feature representations output by the hidden layers trained for L1 ASR while the softmax layers are discriminatively fine-tuned by task-dependent criteria. The results indicate that the feature transformation represented by the hidden layers in the L1 data trained DNN can be effectively transferred to detect mispronunciations in L2 speech.

b. Transfer learning from CE\(_{L1}\), hidden layers

Instead of training all the layers by MFC, we tune only the affine transform in the softmax layer according to MFC (CE\(_{L1}\) for the hidden layers and MFC\(_{L2}\) for the softmax). An F1-score of 53.6% is achieved, significantly (\(p < 0.001\)) better than conventional GOP based method using CE\(_{L1}\) trained DNN (F1 = 45.4%) and the DNN with all layers trained by MFC (F1 = 49.9%), with only a moderate improvement of \(F_{\text{MFC}}\). Since the hidden layers are remain fixed, this approach can be viewed as a transfer learning approach with hidden layers borrowed from L1 speech recognition task. Mispronunciation detection task utilizes feature representations output by the hidden layers trained for L1 ASR while the softmax layers are discriminatively fine-tuned by task-dependent criteria. The results indicate that the feature transformation represented by the hidden layers in the L1 data trained DNN can be effectively transferred to detect mispronunciations in L2 speech.

c. Transfer learning from other differently trained hidden layers

In addition to transfer from CE\(_{L1}\) trained hidden layers, we further experiment with hidden layers borrowed from three differently trained DNNs. All the three setups train the top softmax layer according to MFC on the L2 training set (MFC\(_{L3}\)). The hidden layers of the DNNs are, respectively, DBN trained on the L1 training data (DBN\(_{L1}\)), sMBR trained on the L1 training data (sMBR\(_{L1}\)), and CE
trained on the L2 training set (CEL1). We can see MFC training of the softmax layer combining with these hidden layer setups also leads to better detection results, but is inferior to CEL1 trained hidden layer + MFC trained softmax layer. By comparing the detection result of CEL1 + MFC trained with that of CEL1 + MFC trained, we can conclude that better capability of discriminating pronunciations in standard native speech (L1 speech) rather than non-native (L2) speech helps to obtain better detection result.

Table VI demonstrates the detection results in terms of precision and recall obtained by the corresponding DNNs. The numbers of TA, FA, TR, and FR normalized by the total number of phone realizations in the data set, detection accuracy and Cohen’s κ are displayed in Table VII. Results suggest that the maximization of F1-score yields improvements of both precision and recall over the CEL1 baseline. The six metrics in Table VII can also be improved by MFC training of the DNN.

Based on the above results and comparisons, we have seen GOP based mispronunciation detection can be casted into a two-stage based transfer learning framework: Discriminating the pronunciations in the acoustic space (more specifically, the native pronunciation space) using features extracted by the hidden layers (trained by CEL1), and approximating the golden standard of a human annotator using a trainable softmax layer (trained by MFC). A further verification of this hypothesis will be carried out in Sec. IV B 4.

3. Conventional GOP using GMM-HMMs

This section demonstrates conventional GOP based mispronunciation detection results using GMM-HMMs for comparisons with those using DNN-HMMs. Some results were originally presented in Ref. 26 and are listed here for the completeness of this work and convenience for discussions. Similar to the DNN-HMMs, context-independent (CI) GMM-HMMs are used due to the limited non-native (L2) training data, especially the limited amount of mispronounced training data. Another reason for using CI models is that context information is not easy to implement considering possible mispronunciations around the target phone. The spectral front-end uses 39 dimensional vector, consisting of 13 MFCCs and their first and second derivatives. The HMM set has 67 phones (28 initials and 37 finals plus silence and short pause), each HMM state is a mixture of 8 Gaussians. Detection results using GMM-HMMs are listed in Table VIII. The GMM-HMMs are trained by different criterion (ML/MPE/MMI/MFC). The results in precision and recall are listed in Table IX. Speech recognition results using the corresponding models are listed in Table X.

The baseline GMM-HMMs are ML trained on either the L1 or the L2 training set (ML1 or ML2). The corresponding detection F1-score on the L2 test set are, respectively, 0.382 and 0.381. Upon these models, the GMM-HMMs are trained by some discriminative training criterion that aims at reducing WER popular in speech recognition (MMI/MPE) on either the L1 or the L2 training set. It is shown whilst the acoustic models have been well trained by MMI and MPE before they are used for mispronunciation detection, only MPE training on the L1 data (MPE1) shows some F1-score improvement (2.7%). This indicates that discriminative training aiming at reducing WER does not explicitly lead to F1-score improvement in automatic mispronunciation detection.

In the final part of Table VIII, we report the detection results of MFC training of the GMM-HMMs. The
GMM-HMMs are initialized by ML_{L1} and then optimized according to MFC using the extended Baum-Welch algorithms proposed in Refs. 25 and 26. Refer to Refs. 25 and 26 for more details about MFC training of the GMM-HMMs. It is seen the F1-score on the L2 test set improves to 48.8%, significantly better than that from ML trained GMM-HMMs. So far, we have seen MFC training of the acoustic models benefits both GMM-HMM and DNN-HMM based mispronunciation detection. From the SERs reported in Table X, we can see when the MFC trained GMM-HMMs are used for speech recognition, SER rises dramatically, showing that detection F1-score and speech recognition accuracy are two different objectives. This is similar to DNN based acoustic models.

4. Transfer learning based GOP using GMM-HMMs

In conventional GOP based mispronunciation detection, the golden standard is approximated by using tunable thresholds, which might be too simple to precisely learn complex judgment criterion. As observed in GOP based mispronunciation detection based on DNN-HMMs, using a softmax layer trained by MFC has shown better mispronunciation detection results. Inspired by this, it is reasonable that we can extend the conventional GOP based framework using GMM-HMMs to a new detection architecture, which uses GMMs as the hidden layer and a softmax output layer (transfer learning GOP using GMM-HMMs). Given the input MFCC frames, the GMM hidden layer outputs acoustic scores (log likelihood) and feeds them into the softmax layer which outputs the senone posterior probabilities to compute the GOP scores. The affine transform in the softmax layer is first initialized randomly and then fine-tuned by MFC. The system architecture is depicted in Fig. 3.

![FIG. 3. (Color online) Transfer learning based GOP framework using GMMs as the hidden layer.](image)

For the GMM based hidden layer, it is possible that the Gaussians are borrowed from GMM-HMMs trained by different training criteria. By comparing speech recognition and mispronunciation detection results from GMM-HMMs and DNN-HMMs, it is natural to argue that better native (L1) speech recognition performance leads to better mispronunciation detection result. However, what has been puzzling in our previous work was the results presented in Table VIII, is that the GMM-HMMs trained by MMI or MPE which aims at reducing WER showed opposite mispronunciation detection results: while MPE trained GMM-HMMs on the L1 dataset show better F1-score than ML trained GMM-HMMs, MMI training even degrades the detection performance. On the L2 training set, MPE and MMI training of the GMM-HMMs though greatly improve speech recognition on the L2 test set, also degrade mispronunciation detection performance. As for the DNN-HMMs, it has also been shown that sMBR training improves speech recognition, nevertheless, the detection F1-score degrades.

According to these results, it is necessary to find out what objective function is suitable for training the hidden layers (DNN or GMM) for transfer learning in GOP based mispronunciation detection. In Table XI we show the average frame log posterior probabilities of the canonical senones using different training approaches. The corresponding mispronunciation detection results using these models within the conventional GOP and the transfer learning based GOP frameworks are summarized in Table XII. We can see compared with the ML and MMI trained GMM-HMMs, the MPE trained GMM-HMMs show higher frame-level senone posterior probabilities (in a sense, better senone classification accuracy) and accordingly, achieve better detection results, in both the conventional GOP and the softmax GOP frameworks. The same thing happens to DNN based acoustic models: the CE trained DNN with lower CE objective than the sMBR trained DNN yields better detection F1-score.
To further validate the idea that CE minimization leads to better F1-score in transfer learning based GOP, we train the GMM-HMMs according to CE minimization on the L1 training set (CE1), which is achieved by optimizing the following objective function:

$$F_{CE} = - \sum_{t=1}^{T} \log \frac{p_s^k(o_t | s_t)}{\sum_{s} p_s^k(o_t | s)} ,$$

(29)

where T is all the training frames in the L1 training set and $0 < k < 1$ is a commonly applied exponential scaling factor in discriminative training to reduce dynamic range of the probabilities. s_t is the referenced senone label using Viterbi alignment against the phone transcriptions. S is the total number of states (senones) in the HMM set. The extended Baum-Welch (EBW) algorithms are applied to update the Gaussian means and variances,

$$\mu_{sm} = \frac{\beta^\alpha_{sm} - \beta^\beta_{sm} + D_{sm} \tilde{\mu}_{sm}}{\beta^\alpha_{sm} - \beta^\beta_{sm} + D_{sm}} ,$$

(30)

$$\sigma^2_{sm} = \frac{Y^\alpha_{sm} - q Y^\beta_{sm} + D_{sm} (\tilde{\sigma}^2_{sm} + \tilde{\mu}^2_{sm})}{\beta^\alpha_{sm} - \beta^\beta_{sm} + D_{sm}} - \tilde{\mu}^2_{sm} ,$$

(31)

where $\tilde{\mu}_{sm}$ and $\tilde{\sigma}_{sm}$ are, respectively, the current mean and variance for Gaussian m in state s (consider Gaussians with a single dimension for simplicity). μ_{sm} and σ_{sm} are the mean and variance to be updated. The smoothing factor D_{sm} is a Gaussian-dependent factor which is empirically determined for each Gaussian component and typically set to $D_{sm} = E \beta_{sm}^\alpha$. The constant $E = 3.0$ was chosen in the experiments. In Eqs. (30) and (31), the occupation-data, sum-of-data, and sum-of-square-data of the “numerator” are

$$\beta^\alpha_{sm} = \sum_{t=1}^{T} \psi_{sm}(t) ,$$

(32)

$$\beta^\beta_{sm} = \sum_{t=1}^{T} \psi_{sm}(t) \sigma(t) ,$$

(33)

where $\psi_{sm}(t)$ is the posterior probability of being in Gaussian mixture m within state s at time t. The statistics of the “denominator” can be calculated as follows:

$$\beta^\alpha_{sm} = \sum_{t=1}^{T} \psi_{sm}(t) ,$$

(35)

$$\beta^\beta_{sm} = \sum_{t=1}^{T} \psi_{sm}(t) \sigma(t) ,$$

(36)

$$\beta^\beta_{sm} = \sum_{t=1}^{T} \psi_{sm}(t) \sigma(t) ,$$

(37)

To further validate the idea that CE minimization leads to better F1-score in transfer learning based GOP, we train the GMM-HMMs according to CE minimization on the L1 training set (CE1), which is achieved by optimizing the following objective function:

$$F_{CE} = - \sum_{t=1}^{T} \log \frac{p_s^k(o_t | s_t)}{\sum_{s} p_s^k(o_t | s)} ,$$

(29)

where T is all the training frames in the L1 training set and $0 < k < 1$ is a commonly applied exponential scaling factor in discriminative training to reduce dynamic range of the probabilities. s_t is the referenced senone label using Viterbi alignment against the phone transcriptions. S is the total number of states (senones) in the HMM set. The extended Baum-Welch (EBW) algorithms are applied to update the Gaussian means and variances,

$$\mu_{sm} = \frac{\beta^\alpha_{sm} - \beta^\beta_{sm} + D_{sm} \tilde{\mu}_{sm}}{\beta^\alpha_{sm} - \beta^\beta_{sm} + D_{sm}} ,$$

(30)

$$\sigma^2_{sm} = \frac{Y^\alpha_{sm} - q Y^\beta_{sm} + D_{sm} (\tilde{\sigma}^2_{sm} + \tilde{\mu}^2_{sm})}{\beta^\alpha_{sm} - \beta^\beta_{sm} + D_{sm}} - \tilde{\mu}^2_{sm} ,$$

(31)

where $\tilde{\mu}_{sm}$ and $\tilde{\sigma}_{sm}$ are, respectively, the current mean and variance for Gaussian m in state s (consider Gaussians with a single dimension for simplicity). μ_{sm} and σ_{sm} are the mean and variance to be updated. The smoothing factor D_{sm} is a Gaussian-dependent factor which is empirically determined for each Gaussian component and typically set to $D_{sm} = E \beta_{sm}^\alpha$. The constant $E = 3.0$ was chosen in the experiments. In Eqs. (30) and (31), the occupation-data, sum-of-data, and sum-of-square-data of the “numerator” are

$$\beta^\alpha_{sm} = \sum_{t=1}^{T} \psi_{sm}(t) ,$$

(32)

$$\beta^\beta_{sm} = \sum_{t=1}^{T} \psi_{sm}(t) \sigma(t) ,$$

(33)

where $\psi_{sm}(t)$ is the posterior probability of being in Gaussian mixture m within state s at all the possible states at time t.

The CE minimization training of the GMMs is an iterative process starting from the ML trained GMM-HMMs. It is seen in Table XII the CE objective decreases and hence the frame-level senone classification accuracy improvement is accordingly obtained in general. As for mispronunciation detection, it is shown in Table XII the CE trained GMM-HMMs achieve better detection results than the MPE/MPE/MMI trained models. By further comparing the results of conventional GOP and transfer learning based GOP that has the same hidden layer(s), mispronunciation detection F1-score improves substantially, indicating the superiority of approximating the human standard using a MFC trained softmax layer to simple thresholds in conventional GOP based framework.

5. NNLR classifier based mispronunciation detection

Instead of training the acoustic models in GOP based mispronunciation, an alternative to incorporating the golden standard of human annotator in a mispronunciation detection system is to follow the classifier based approach, i.e., train an additional back-end classifier supervised by the annotated results. For example, in Ref. 12, mispronunciation detection was casted into a binary classification task. The outputs of DNN based acoustic models were used to compute segmental mispronunciation detection features as the input of an NNLR based classifier and human-annotated results (golden standard) were used to train back-end classifier. In classifier based approach, the acoustic models are used as feature extractor which remain fixed and are not optimized.

The NNLR classifier based mispronunciation detection scheme is demonstrated in Fig. 2(b). The NNLR classifier is a three-layer neural network with a hidden layer and a output layer that consists of multiple logistic regression (LR) classifiers, each for classifying one phone. DNN acoustic models are exploited to compute mispronunciation detection features and NNLR classifier is adopted as the back-end to detect mispronunciations. Different from the GOP based approach, NNLR classifier exploits log phone posterior (LPP) of all the possible phones as the mispronunciation features, not merely LPP of the

<p>| Table XII. Mispronunciation detection results using GOP and transfer learning GOP. |</p>
<table>
<thead>
<tr>
<th>Hidden</th>
<th>Criterion</th>
<th>F1</th>
<th>P</th>
<th>R</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOP</td>
<td>MLE L1</td>
<td>38.2</td>
<td>37.6</td>
<td>38.9</td>
<td>96.8</td>
</tr>
<tr>
<td>GOP</td>
<td>MMI L1</td>
<td>38.7</td>
<td>38.2</td>
<td>39.3</td>
<td>96.8</td>
</tr>
<tr>
<td>GOP</td>
<td>MPE L1</td>
<td>40.9</td>
<td>39.6</td>
<td>42.3</td>
<td>96.8</td>
</tr>
<tr>
<td>GOP</td>
<td>CE L1</td>
<td>41.8</td>
<td>39.9</td>
<td>43.9</td>
<td>96.9</td>
</tr>
<tr>
<td>GOP</td>
<td>CE L1</td>
<td>45.4</td>
<td>47.1</td>
<td>43.9</td>
<td>97.3</td>
</tr>
<tr>
<td>GOP</td>
<td>sMBR L1</td>
<td>44.9</td>
<td>44.3</td>
<td>45.5</td>
<td>97.1</td>
</tr>
<tr>
<td>Transfer Learning GOP</td>
<td>MLE L1</td>
<td>42.0</td>
<td>40.3</td>
<td>43.8</td>
<td>96.9</td>
</tr>
<tr>
<td>Transfer Learning GOP</td>
<td>MMI L1</td>
<td>41.6</td>
<td>40.9</td>
<td>42.3</td>
<td>96.9</td>
</tr>
<tr>
<td>Transfer Learning GOP</td>
<td>MPE L1</td>
<td>43.6</td>
<td>43.3</td>
<td>44.0</td>
<td>97.1</td>
</tr>
<tr>
<td>Transfer Learning GOP</td>
<td>CE L1</td>
<td>44.4</td>
<td>44.0</td>
<td>44.9</td>
<td>97.1</td>
</tr>
<tr>
<td>Transfer Learning GOP</td>
<td>sMBR L1</td>
<td>53.6</td>
<td>60.0</td>
<td>48.5</td>
<td>97.9</td>
</tr>
<tr>
<td>Transfer Learning GOP</td>
<td>sMBR L1</td>
<td>52.5</td>
<td>58.4</td>
<td>47.7</td>
<td>97.8</td>
</tr>
</tbody>
</table>

$$Y_{sm}^n = k \sum_{t=1}^{T} \psi_{sm}(t) \sigma^2(t) ,$$

(34)
The LPP feature of segment n is expressed as

$$f_{\text{LPP}}(n) = [LPP(q_1|O_n), LPP(q_2|O_n), \ldots, LPP(q_M|O_n)]^T,$$

where M is the number of all the possible phones. Furthermore, log posterior ratio (LPR) feature between the competitive phone against the canonical phone were used to detect salient pronunciation replacement.

$$f_{\text{LPR}}(n) = [LPR(q_1), LPR(q_2), \ldots, LPR(q_M)]^T,$$

where

$$LPR(q_i) = \frac{1}{T_n} (\log P(q_i|O_n) - \log P(q_n|O_n)).$$

q_i represents a competitive phone, more details about implementing LPP and LPR features for classifier based mispronunciation detection can be found in Refs. 10 and 12.

The training of the NNLR classifier follows the recipe in Ref. 12: The weights and biases of hidden layers are initialized with pretrained stacked RBMs, then phone-specific LR classifiers are added above the hidden layers with randomly initialized weights. Finally, all the NNLR parameters are discriminatively optimized according to MFC with back-propagation using gradient ascent. LPR feature was not adopted in this work because no obvious improvement was shown in our experiments.

The NNLR classifier based mispronunciation detection results are shown in Table XIII. First we use LPPs computed by the CE trained DNN as features for the NNLR based classifier, which achieves an F1-score of 50.4%, 5.0% better than that by GOP framework using CE trained DNN (45.4%). This mainly benefits from the supervision of the golden standard in the training of the back-end classifier. Then we use LPPs from the MFC trained DNN as inputs to the NNLR classifier, an F1-score of 54.5% is yielded, 4.1% better than that using LPPs from CE trained DNN (50.4%). This emphasizes the importance of feature learning when using classifier based mispronunciation detection. Finally, we compare the GOP and the classifier based approaches both using the DNN acoustic models with MFC trained softmax layer. It is seen the GOP based approach (53.6%) is comparable to the classifier based approach (54.5%), indicating training the softmax layer of the front-end DNN has an almost equivalent effect of overall training of the DNN and an additional back-end classifier. Furthermore, the softmax layer is trained by MFC, indicating that it not necessary to build an explicit mapping to L1 senone label for native speech recognition in both GOP and classifier based mispronunciation detection.

<table>
<thead>
<tr>
<th>TABLE XIII. Results (%) with NNLR classifier in (F1)-score, (P)recision, (R)ecall, and (A)ccuracy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNN</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>CEL1 + CEL1</td>
</tr>
<tr>
<td>CEL1 + MFC</td>
</tr>
</tbody>
</table>

V. CONCLUSION AND FUTURE WORK

We have shown the effectiveness of a transfer leaning approach to GOP based mispronunciation detection when applying MFC training to DNN-HMM based acoustic models. The MFC training is achieved by optimizing only the softmax layer rather than the whole DNN parameters, i.e., the hidden layers for mispronunciation detection are borrowed from speech recognition DNN the final softmax layer is task-dependent. Thus, GOP based mispronunciation detection can be cased into a two-stage based transfer learning framework: The first stage uses hidden layer(s) to extract senone discriminating features and the second approximates human standard using a trainable softmax layer. Results have shown the DNN composed by hidden layers borrowed from native speech recognizer and a MFC trained softmax layer yields F1-score improvement over the DNN with all the layers trained by the CE objective function, and obtain better detection results and robustness to over-training than DNN of which all the layers are trained by MFC.

We carried out thorough investigations into the use of transfer learning GOP based mispronunciation detection. The investigation was conducted by experimenting with different mispronunciation detection architectures proposed in literature that make use of different acoustic models (GMM-HMM, DNN-HMM) trained by different criteria. For the hidden layer(s) in the first stage, we found it is preferable to use frame-level CE minimization as the objective function to train the model parameters. Better frame-level senone classification accuracy on native speech data leads to better mispronunciation detection results. For the softmax layer, it is preferable to use MFC training to approximate human standard on an imbalanced training dataset. We further investigated into NNLR classifier based mispronunciation detection using DNN based acoustic models. It is shown mispronunciation detection features computed from the DNN with MFC trained softmax layer benefits both the GOP and the NNLR classifier based mispronunciation detection. These results have shown MFC training of the DNN filled the performance gap between the GOP and the classifier based mispronunciation detection frameworks.

Compared with the inter-rater annotation results on the L2 database and mispronunciation detection performance achieved by other DNN based systems reported in Refs. 11, 12, 30, and 31, the best detection result from transfer learning based GOP method presented in this work (53.6% in F1-score) is fairly low and needs to be further improved in the future work. We have also seen the Uighur learners of Mandarin are more likely to produce tonal errors. How to build a tonal error detector to facilitate the learning of Mandarin is a subject for future work.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61365005, 61663044, and 61761041 and the Funds for Creative Research Groups of Higher Education in Xinjiang.

