<table>
<thead>
<tr>
<th>Title</th>
<th>Optical reset modulation in the SiO$_2$/Cu conductive-bridge resistive memory stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawashima, Tomohito; Zhou, Yu; Yew, Kwang Sing; Ang, Diing Shenp</td>
</tr>
<tr>
<td>Date</td>
<td>2017</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/44216</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017 The Authors (Published by AIP Publishing). This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of The Authors (Published by AIP Publishing). The published version is available at: [http://dx.doi.org/10.1063/1.5003107]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Optical reset modulation in the SiO$_2$/Cu conductive-bridge resistive memory stack

T. Kawashima,1,2,a) Y. Zhou,1 K. S. Yew,1 and D. S. Ang1,b)

1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
2Toshiba Corporation, 33, Shin-Isogo-Cho, Isogo-ku, Yokohama 235-0017, Japan

(Received 15 May 2017; accepted 2 September 2017; published online 15 September 2017)

We show that the negative photoconductivity property of the nanoscale filamentary breakdown path in the SiO$_2$ electrolyte of the SiO$_2$/Cu conductive bridge resistive random access memory (CBRAM) stack is affected by the number of positive-voltage sweeps applied to the Cu electrode (with respect to a non-metal counter electrode). The path’s photo-response to white light, of a given intensity, is suppressed with an increasing number of applied positive-voltage sweeps. When this occurs, the path may only be disrupted by the light of a higher intensity. It is further shown that the loss of the path’s photosensitivity to the light of a given intensity can be recovered using a negative-voltage sweep (which eliminates the path), followed by the reformation of the path by a positive-voltage sweep. The above behavior is, however, not seen in the SiO$_2$/Si stack (which involves a non-metal Si electrode), suggesting that the photo-response modulation effect is related to the Cu electrode. The demonstrated reversible electrical modulation of the path’s photo-response may afford greater flexibility in the electro-optical control of the CBRAM device. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5003107]

Alternative memory concepts, such as phase change,1–3 spin-torque transfer,4 and resistance switching,5–16 have been pursued as possible solutions for overcoming the scaling limitations of the flash memory and dynamic random access memory. The resistive memory is a promising candidate for a universal memory due to its outstanding properties, such as high endurance and scalability.6–16 In particular, the SiO$_2$/Cu conductive-bridge random access memory (CBRAM) has garnered considerable attention, as its compatibility with the conductive-bridge random access memory (CBRAM) has high endurance and scalability.6–16 In particular, the SiO$_2$/Cu CBRAM stack is affected by the number of positive-voltage sweeps applied to the Cu electrode (with respect to a non-metal counter electrode). The path’s photo-response to white light, of a given intensity, is suppressed with an increasing number of applied positive-voltage sweeps. When this occurs, the path may only be disrupted by the light of a higher intensity. It is further shown that the loss of the path’s photosensitivity to the light of a given intensity can be recovered using a negative-voltage sweep (which eliminates the path), followed by the reformation of the path by a positive-voltage sweep. The above behavior is, however, not seen in the SiO$_2$/Si stack (which involves a non-metal Si electrode), suggesting that the photo-response modulation effect is related to the Cu electrode. The demonstrated reversible electrical modulation of the path’s photo-response may afford greater flexibility in the electro-optical control of the CBRAM device.

We show that the negative photoconductivity property of the nanoscale filamentary breakdown path in the SiO$_2$/Cu stack. An intriguing behavior, whereby the photosensitivity of the path may be modulated by a positive voltage applied to the Cu electrode (with respect to a non-metal counter electrode), is revealed. Specifically, the repeated application of a positive voltage to the Cu electrode can cause the path to lose its NPC response. The loss in NPC response may be restored using a negative voltage (which leads to an electrical reset similar to that in a SiO$_2$/Cu CBRAM device), followed by the reformation of the breakdown path by SBD again. Such an NPC modulation effect is, however, not seen in the SiO$_2$/Si stack, lending support to a proposed role of the Cu electrode behind the observation. While the exact mechanism requires further confirmation, our demonstration of NPC-sensitivity tuning of the filamentary breakdown path in the SiO$_2$/Cu stack by a straightforward electrical means indicates a possibility of engaging the CBRAM as an electro-opto device.

On an hydrogen fluoride-cleaned p-type Si(100) substrate (of resistivity $5 \times 10^{-3} - 1 \times 10^{-2}$ Ω cm), a 30-nm Ti adhesion layer followed by a 30-nm Cu electrode were deposited by DC magnetron sputtering. Subsequently, a 10-nm SiO$_2$ layer was grown at 250°C via a parallel-plate plasma-enhanced chemical vapor deposition process using SiH$_4$ and N$_2$O gases to form the SiO$_2$/Cu stack. No top electrode deposition was carried out. For comparison, a SiO$_2$(5-nm)/p-Si stack was also fabricated; the SiO$_2$ thickness was reduced to keep the breakdown voltage at a moderate level (cf. Fig. 2(b)). After the SiO$_2$ growth, the samples were loaded into an ultra-high vacuum ($\sim 5 \times 10^{-10}$ Torr) conductive atomic force microscopy (C-AFM) system. A diamond-coated Si cantilever probe functioned as the top non-metal

a)Author to whom correspondence should be addressed: edsang@ntu.edu.sg

b)E-mail: tomo@kawashima@toshiba.co.jp
electrode, simulating a nanoscale CBRAM device or transistor gate stack (Fig. 1). The breakdown of the SiO$_2$ was made using a voltage sweep supplied by a parameter analyzer to the probe while the bottom Cu or Si electrode was grounded. A current compliance (1.1 nA) setting prevented progression towards hard breakdown. The vacuum environment helped avoid surface contamination and anodic oxidation. An light-emitting diode (LED) lamp, having constituent wavelengths of 400–700 nm, positioned at a quartz window of the C-AFM system served as the white light source. No heating of the sample by the LED lamp was found even after an extended illumination period.

Typical current-voltage (I–V) curves of the SBD step (A) and subsequent voltage-sweep measurements are depicted in Figs. 2(a) and 2(b), respectively, for the SiO$_2$/Cu and SiO$_2$/Si stacks. Abrupt increase in the current to the compliance level marks the formation of a filamentary breakdown path in the SiO$_2$. Despite the 2× thicker SiO$_2$, the breakdown voltage (at which the current-jump occurs) of the SiO$_2$/Cu stack is about half that of the SiO$_2$/Si stack. The lower breakdown voltage may be attributed to the migration of Cu ions into the SiO$_2$, driven by the negative-voltage sweep of the SBD step. Studies on Cu CBRAM have found that under a large electric field, Cu ions from the electrode may migrate into the oxide, resulting in the formation of a Cu filament. The presence of Cu ions in the SiO$_2$ at the probe location increases the electric field there, due to a decrease of the effective oxide thickness. This is believed to have facilitated the dissociation of Si-O bonds and the breakdown of the SiO$_2$ at a lower voltage than in the SiO$_2$/Si stack. A study that used atomic-scale spectroscopy has found an oxygen-deficient or vacancy-populated breakdown oxide region, implying that the Si-O bond dissociation and field- and thermal-induced migration of the released oxygen ions away from the dissociated bonds result in the SiO$_2$ breakdown.

During the post-breakdown positive-voltage sweep (B) of the SiO$_2$/Si stack, no decrease in the current can be seen [Fig. 2(a)], indicating that breakdown recovery did not occur. This is apparent from the following negative-voltage sweep (C), which produced an I–V curve similar to curve A in the reverse sweep direction. The absence of breakdown recovery was obtained on 29 other breakdown locations on the SiO$_2$/Si stack. This observation draws similarity to the lack of breakdown recovery in the polysilicon/HfO$_2$/Si stack. In contrast, breakdown recovery can be readily observed in the TiN/HfO$_2$/Si stack by negatively biasing the TiN.

![Figure 1](image1.png)

FIG. 1. Schematic illustration of the ultra-high vacuum (UHV) conductive atomic force microscopy (C-AFM) setup and the two test samples (not drawn to scale) used in this study. The C-AFM probe is connected to a source/monitor unit of a semiconductor parameter analyzer. White-light illumination is provided by an LED lamp, positioned at a quartz window of the UHV chamber, ~30 cm away from the test sample.

![Figure 2](image2.png)

FIG. 2. Current-voltage (I–V) curves of (a) SiO$_2$/p-Si and (b) SiO$_2$/Cu/Ti/p-Si stacks. A negative-voltage ramp (curve A, black) for initiating SiO$_2$ breakdown was applied, followed by a positive-voltage ramp (curve B, red) and then a negative-voltage ramp (curve C, blue). Arrows indicate the directions of voltage sweeps.
Considering that the light intensity at the oxide surface is limited (with our present set-up, the number of switching cycles is limited) and optical reset (high resistance) states, respectively.

and light exposure, the breakdown path in both stacks can be limited to \(0.11-0.27\) eV, which corresponds to \(\frac{10^{-12}}{C^2}\) for interstitial oxygen ions within the oxide network is significant decrease of the breakdown current, from \(10^{-14}\) A to \(10^{-14}\) A (measurement floor), can be observed in both cases, similar to the NPC response of the HfO\(_2\)/TiN stack.

A negative-voltage sweep applied after the illumination produced \(I-V\) curves that are partially shifted back towards the respective pre-breakdown curves [Fig. 3(b)], indicating that some degree of photo-induced recovery of the breakdown paths has occurred. By alternating between electrical SBD and light exposure, the breakdown path in both stacks can be repeatedly switched between the electrical set (low resistance) and optical reset (high resistance) states, respectively. With our present set-up, the number of switching cycles is limited (\(\approx 70\)) due to the thermal drift of the C-AFM probe.

It has been proposed that the optical reset proceeded with the photo-excitation of interstitial oxygen ions surrounding the breakdown path, resulting in their migration and recombination with the vacancy defects in the path. Besides the electric-field directed migration of oxygen ions (released from the Si-O bond dissociation during the breakdown process) towards the anode, these oxygen ions may also propagate laterally outwards from the breakdown site due to Joule heating, and some of them remained in the proximity when the process is aborted. The migration barrier for interstitial oxygen ions within the oxide network is \(\approx 0.11-0.27\) eV, which corresponds to \(\approx 1.8-4.3 \times 10^{-20}\) J. Considering that the light intensity at the oxide surface is \(2\) mW/cm\(^2\) or \(2 \times 10^{-19}\) J/s A\(^2\), it is plausible for photo-induced migration of interstitial oxygen ions to occur, resulting in the disruption of the breakdown path. In contrast, such reverse migration of surrounding interstitial oxygen ions to the breakdown site would not occur during voltage sweeping, as Joule heating would tend to favor the outward propagation of these ions instead. Thus, breakdown recovery could not occur in the SiO\(_2\)/Si stack during the voltage sweep [Fig. 2(a)].

Here, we also discuss the quasi-conduction band (QCB) model, which appears consistent with the optical reset but not with the electrical reset observations. First-principles simulation (e.g., Ref. 32) has revealed a defect band, attributed to oxygen vacancies, situated \(\approx 2\) eV below the SiO\(_2\) conduction band edge. When filled by the electron flux during breakdown, this defect band may be coupled to the electrodes to form a QCB throughout the system, giving rise to the persistent low-resistance state after SBD. Under illumination by white light (having photon energy from \(\approx 1.8\) to \(3.1\) eV), the photoexcitation of the trapped electrons to the conduction band occurs. Consequently, the defect band is decoupled from the electrodes and the QCB is annihilated, causing a transition to the high-resistance state. A similar decoupling may occur when the trapped electrons are depopulated via tunneling to the conduction band under a sufficiently large voltage bias, triggering an electrical reset. However, a major discrepancy is surfaced here since electrical reset is observed only in the SiO\(_2\)/Cu stack but not in the SiO\(_2\)/Si stack. Difference in the SBD I-V curves of the two stacks (Fig. 2) falls well within the distribution obtained on a given stack [Fig. 4(c)]. In this absence of major deviation, the complete lack of the electrical reset in the SiO\(_2\)/Si stack is “puzzling” in the context of the QCB model. On the other hand, the model on the migration of oxygen (the lack of which in the SiO\(_2\)/Si stack) may address the discrepancy satisfactorily and consistently explain the optical and electrical reset (or the lack of) in our samples.

The electrical modulation of the optical reset in the SiO\(_2\)/Cu stack is demonstrated in Fig. 4. SBD was first induced by a negative-voltage sweep (0 \(-\rightarrow\) -8 V at 1.1 nA compliance) applied to the C-AFM probe. The breakdown path was then checked for an NPC response or further subjected to a varying number of the same negative-voltage sweeps before illumination was applied. The procedure was repeated on numerous randomly selected locations on the test sample. It should be noted that positive-voltage sweeping was not applied as this would disrupt the breakdown path and cause a reset electrically, as shown in Fig. 2(b).

\(\text{FIG. 3. (a) Current-time (I-t) plots of the SiO}_2/p-Si (Si) and SiO}_2/Cu/Ti/p-Si (Cu) stacks showing the disruption of the breakdown path under white-light illumination. A low voltage of }-1.5\text{ V and }-1\text{ V, respectively, was applied to the C-AFM probe for sensing the breakdown current. The currents in both stacks show a steep decrease upon illumination at 100 s and remain low at }\approx 10^{-14}\text{ A after the light was turned off at 200 s. (b) Comparison of the forward and reverse-sweep current-voltage curves for the first soft-breakdown (SBD) step and the re-breakdown step after illumination (post-illum).}\)

\(\text{FIG. 4. (a) Current-time (I-t) plots depicting the effect of white-light illumination on the breakdown path in the SiO}_2/p-Si (Si) and SiO}_2/Cu/Ti/p-Si (Cu) stacks, after subjecting each path to more than 15 negative-voltage sweeps. (b) The percentage of breakdown paths (out of a total of 30 each) which can still display the NPC behavior after a certain number of negative-voltage sweeps. (c) Pre-illumination current-voltage (I-V) curves of 20 breakdown paths which show NPC behavior (thin red lines) and those of 20 other breakdown paths which lost their NPC behavior after more than 15 negative-voltage sweeps (thin blue lines). The respective averaged I-V curves are also shown (symbols). (d) After numerous negative-voltage sweeps, a breakdown path can only be disrupted by a much higher light intensity.}\)
For breakdown paths that were subjected to only a few (< 5) negative-voltage sweeps (including the SBD step), a majority (~80%) of them display the NPC response during illumination, as shown in Fig. 3(a). In contrast, only a minority (~30%) of the breakdown paths could show the NPC response after being subjected to 15 negative-voltage sweeps prior to the illumination. The majority failed to register any NPC response, i.e., the current is unperturbed during illumination [Fig. 4(a)]. The observations indicate that the NPC response of the breakdown path in the SiO2/Cu stack can be manipulated by the number of times the Cu electrode is positively biased with respect to the non-metal counter electrode (C-AFM probe).

However, the same procedure, when applied on the SiO2/Si stack, did not impact the NPC response of the breakdown path. After more than 15 negative-voltage sweeps, the breakdown path can still be disrupted upon illumination [Fig. 4(a)], with no apparent difference from the case without any additional voltage sweeps applied [Fig. 3(a)]. A study on 30 random breakdown locations shows that all of them retain their NPC response after more than 15 sweeps. This shows that the NPC modulation effect seen in the SiO2/Cu stack is linked to the Cu electrode.

Next, we examine two scenarios which may have led to the breakdown path in the SiO2/Cu stack losing its NPC response after repeated negative-voltage sweeps. First, Joule heating during voltage sweeping may cause a progression towards more severe breakdown, due to further dissociation of weak Si-O bonds within the breakdown region and propagation of the released oxygen ions further away from the breakdown path.29 Consequently, the path may become less responsive to illumination because of the reduced availability of interstitial oxygen in its proximity.22 This effect is intrinsic and thus should be common to both stacks. Its relevance to the SiO2/Cu stack is, however, not supported since repeated voltage sweeping has no impact on the NPC response of the breakdown path in the SiO2/Si stack. Moreover, transition to a more severe breakdown after repeated voltage sweeping should be accompanied by a change in the I-V curve. This is not borne out by a comparison made between the pre-illumination I-V curves of 20 breakdown locations which were NPC responsive immediately after breakdown and those of 20 other locations which lost their NPC response after 15 repeated voltage sweeps [Fig. 4(c)]. As can be seen, the two sets of I-V curves are closely overlapped and the averaged I-V curves are not statistically different.

The second scenario is depicted in Fig. 5. It is reported that Cu ions could precipitate in a solid electrolyte33 (SiO2 in our case), with gaps in between the Cu-ion clusters. After SBD, the breakdown path may be made up of both Cu-ion and vacancy clusters [Fig. 5(a)]. The existence of vacancies in the path makes it NPC responsive, as photon-stimulated migration of oxygen ions in the path’s vicinity and their recombination with the vacancies in the path would disrupt it, leading to a partial restoration of the oxide resistance22 [Fig. 3(b)]. If a negative-voltage sweep is repeatedly applied after breakdown, more Cu ions would be drawn into the path,17 occupying the vacancies there to form a complete Cu filament [Fig. 5(b)]. First-principles calculation34 has shown that metal-ion migration in an oxide network is enhanced by the presence of vacancies. The disruption of the Cu filament requires not only the cleavage of Cu-Cu bonds but also the ionization of Cu to Cu⁺ or Cu²⁺. The Cu-Cu bonding energy is 2.08 eV (Ref. 28) and the first ionization energy to form Cu⁺ is 7.73 eV,35 requiring a total energy of 1.57 × 10⁻¹⁸ J, ~10× larger than the energy provided by the 2 mW/cm² light source. Thus, the light is unable to disrupt the breakdown path in the SiO2/Cu stack after a complete Cu filament is formed. A change in vacancy distribution has been shown to significantly impact the magnetic and electrical properties of SrTiO3.36,37 In our case, the lack of a discernable change in the I-V curve after complete Cu filament formation needs further study [Fig. 4(c)].

To check the above hypothesis, a breakdown path was generated using a negative-voltage sweep on a randomly selected position on the SiO2/Cu stack. The path registered the NPC response when illuminated by the white light of intensity 4.5 mW/cm². After the illumination, the breakdown path was reformed using a negative-voltage sweep. This was followed by more than 15 negative-voltage sweeps before the path was subjected to the white light of the same intensity. The path now failed to show any NPC response [Fig. 4(d)]. The same breakdown path was then subjected to the white light of successively higher intensity (11 and 27 mW/cm²). Interestingly, an NPC response was recorded under the strongest illumination [having intensity >10× of that used in Fig. 4(a)], lending support to the above hypothesis.

Experimental results have shown that the NPC response of the breakdown path in the SiO2/Cu stack can be suppressed by multiple negative-voltage sweeps applied to the non-metal counter electrode (or positive-voltage sweeps applied to the Cu electrode). However, such an effect is not observed in the SiO2/Si stack, where a non-metal Si electrode is used, pointing to a definite role by the Cu electrode in the observed NPC response modulation. A hypothesis involving Cu ions migration, due to the applied voltage sweeping, into the breakdown path and occupying the vacancy defects there to form a Cu filament is proposed. Consequently, the photo-induced oxygen-vacancy recombination (believed to have given rise to the NPC response) is suppressed and thus the NPC response is affected. Preliminary calculations have indicated that a stronger light intensity is needed to disrupt a Cu filament which has been supported experimentally.