<table>
<thead>
<tr>
<th>Title</th>
<th>Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Low, Aloysius Y. T.; Thanawalla, Ayesha Rustom; Yip, Alaric K. K.; Kim, Jinsook; Wong, Kelly L. L.; Tantra, Martesa; Augustine, George James; Chen, Albert I-Ming</td>
</tr>
<tr>
<td>Date</td>
<td>2018</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/44499</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2018 The Author(s) (Published by Elsevier). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).</td>
</tr>
</tbody>
</table>
Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus

Aloysius Y.T. Low, 1,2,3 Ayesha R. Thanawalla, 1,3,6 Alaric K.K. Yip, 1,2,3,6 Jinsook Kim, 4 Kelly L.L. Wong, 1,3 Martesa Tantra, 1,3 George J. Augustine, 4,5 and Albert I. Chen 1,3,5,7,*
1Nanyang Technological University (NTU), School of Biological Sciences, Singapore 637551, Singapore
2NTU Institute for Health Technologies, Interdisciplinary Graduate School, Singapore 637553, Singapore
3University of Warwick, School of Life Sciences, Coventry CV4 7AL, UK
4Lee Kong Chian School of Medicine, NTU, Singapore 308232, Singapore
5A*STAR, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
6These authors contributed equally
7Lead Contact
*Correspondence: albert.chen@ntu.edu.sg
https://doi.org/10.1016/j.celrep.2018.02.017

SUMMARY

The deep cerebellar nuclei (DCN) represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA). We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements.

INTRODUCTION

The cerebellum is a critical component of the CNS, involved in sensorimotor integration and voluntary motor adaptation (Eccles et al., 1967; Ito, 2006). Sensory information conveying various modalities, as well as vestibular and proprioceptive information, is relayed to the cerebellum through afferent pathways (Alstermark and Ekerot, 2013; Bostan et al., 2013). The cerebellum also receives efference copy signals from motor centers and the spinal cord, and it is thought to contribute to the generation of feedforward motor commands during movement (Azim et al., 2014a; Franklin and Wolpert, 2011). Thus, a myriad of motor and sensory information from internal and external sources are known to be processed by the cerebellum. However, the circuits through which the cerebellum conveys this integrated information to relevant brain centers and within itself in the context of complex, goal-directed limb movement are not well understood.

Neurons in the deep cerebellar nuclei (DCN) provide the cerebellum with the capability of influencing motor output by linking the cerebellum with many regions of the brain (Bostan et al., 2013). The DCN is broadly subdivided into the lateral, interposed (Int), and medial nuclei in rodents, and each nucleus contains nucleocortical (NC) efferents, which provide a source of mossy fibers (MFs) in the cerebellar cortex and nucleofugal (NF) efferents, which target extra-cerebellar regions (Chan-Palay, 1977; Tolbert et al., 1978). Based on morphological, molecular, and electrophysiological distinctions, at least six neuronal subtypes have been identified in the DCN consisting of glutamatergic, γ-aminobutyric acid-ergic (GABAergic) and/or glycinergic interneurons and projection neurons (Chan-Palay, 1977; Uusisaari and Knöpfel, 2011). However, with the exceptions of a subclass of NC neurons (Ankri et al., 2015; Gao et al., 2016) and neurons that project to the vestibular nuclei (Bagnall et al., 2009) and olivary nuclei (Leffler et al., 2014), the molecular identity of efferents linking the DCN to ascending brain targets is not well defined. Moreover, details of the precise target zone and organization principles are lacking because of the challenges of isolating individual neuronal subpopulations in the DCN.

As the major output neurons in the cerebellum, DCN neurons receive input from Purkinje cells, which are innervated by granule cells that receive a convergence of sensory and motor signals (Chan-Palay, 1977; De Schutter and Bjaalie, 2001), and input from collaterals of MFs and climbing fibers (Najac and Raman, 2017; Uusisaari and De Schutter, 2011). Thus, signals arising from the DCN represent a unique convergence of inputs to the cerebellum and may play an essential role in cerebellar computation. The Int nucleus is implicated in reaching and grasping in humans and monkeys, as well as in bending of limbs and paw placement during locomotion in cats (Armstrong and Edgley,
1984; Bracha et al., 1999; Küper et al., 2011; Monzée et al., 2004). Optogenetic studies provide evidence that the Int nucleus also controls motor learning and kinematics of the eyelid (Gao et al., 2016; Heiney et al., 2014) and mediates forelimb movements through Purkinje cell activities (Lee et al., 2015; Witter et al., 2013). These studies suggest that the Int nucleus has the ability to influence motor output; however, the circuit elements through which Int neurons exert their activities have not been defined. Moreover, the requirements and the contribution of individual cell types within the Int nucleus to rhythmic and discrete movement have not been sufficiently addressed.

In this study, we examine the molecular identity, connectivity, and function of a subpopulation of neurons in the mouse DCN. We discover the utility of urocorin 3 (Ucn3)::Cre mouse line for labeling, monitoring, and manipulating Ucn3::Cre-recombined neurons in the IntA nucleus (IntA Ucn3). We provide electrophysiological and molecular evidence that IntA Ucn3 neurons represent a subset of glutamatergic neurons in the IntA. Using a combination of genetic and viral tracing strategies, we show that IntA Ucn3 neurons give rise to neocortical mossy fibers (NC-MFs) that preferentially target a specific forelimb-related region of the cerebellar cortex and primarily project to a highly restricted region of the motor thalamus linked to the caudal forelimb area of the motor cortex. Diphtheria toxin-mediated ablation and optogenetic stimulation of IntA Ucn3 neurons disrupt skilled reach and locomotion by influencing limb positioning and timing. Our findings describe a subpopulation of glutamatergic projection neurons in the deep cerebellum that regulates the precision of complex, goal-directed limb movements, perhaps by providing feedback signals to the cerebellar cortex and modifying motor commands through the cerebello-thalamo-cortical pathway.

RESULTS

Selective Genetic Targeting of a Subpopulation of Glutamatergic Neurons in the IntA

To define connectivity and function of neuronal subpopulations in the DCN, we identified and acquired a bacterial artificial chromosome transgenic mouse line Ucn3::Cre, which mediates recombination in DCN neurons (Gene Expression Nervous System Atlas [GENSAT]; Mutant Mouse Regional Center). We assessed the recombination ability of Ucn3::Cre mice by crossing them with Rosa26::Isl-eGFP (enhanced green fluorescent protein) and Rosa26::Isl-Channelrhodopsin (ChR2)-eYFP (enhanced yellow fluorescent protein) mice (Rosa26::ChrR2) and found recombined neurons in the Int nucleus (Figure 1A). Using the nine subnuclei defined by histological distinctions (Figures 1B and S1A–S1D) (Paxinos and Franklin, 2007), we found that recombined neurons are concentrated within the IntA and sparsely distributed in other regions (Figures 1C–1E). Quantification of their distribution indicates that >70% of total YFP + neurons in the DCN are located in the IntA, with 15% in the medial nucleus and ~15% in the remaining five subnuclei (Figure 1F; Table S1).

To define the electrophysiological properties of the IntA Ucn3 neurons, we made patch-clamp measurements of the intrinsic electrical properties of YFP + IntA Ucn3 neurons (YFPON) and YFP - non-IntA Ucn3 neurons (YFP OFF). YFPON neurons had a higher firing rate than most YFP OFF neurons (Figures 2A and 2B). In addition, we found some YFP OFF neurons with a firing rate similar to that of YFPON neurons (Figures 2A and 2B). These values are in the range of firing rates of glutamatergic neurons in the DCN (Usisaiari et al., 2007). Analysis of the diameter and area further subdivides these neurons into three groups (large YFP ON [YFPON-L], large YFP OFF [YFP OFF-L], and small YFP OFF [YFP OFF-S]). YFP ON-L and YFP OFF-L neurons are approximately four times larger in area and approximately two times larger in diameter than YFP OFF-S neurons (Figure 2C). Although the distribution of soma sizes of non-GABAergic and GABAergic neurons is overlapping, a soma size greater than 300 μm² in area and 25 μm in diameter is indicative of non-GABAergic neurons in the DCN (Usisaiari et al., 2007). Analysis of the intrinsic electrical properties, including those previously described, revealed no significant differences between the properties of YFP ON-L and YFP OFF-L neurons (Figures 2B and S1-J–S1N) (Usisaiari et al., 2007). However, there are significant differences between YFP ON-L and YFP OFF-S neurons, including input resistance, membrane capacitance, action potential (AP) half-width, and AP frequency (Figures 2B and S1-J–S1N). Thus, of the six neuronal cell types described in the DCN (Usisaiari and Knöpfel, 2011), we have determined that IntA Ucn3 neurons belong to a class of large glutamatergic neurons. In addition, the presence of YFP OFF-L neurons indicates that the IntA Ucn3 neurons comprise a subset of glutamatergic neurons in the IntA.

To define molecular distinctions of IntA Ucn3 neurons, we assessed whether YFP ON neurons express glutamatergic molecular markers (vGluT2, SMI32, and T-box brain 1 [TBR1]) or GABAergic molecular markers (GAD67, Calretinin, and Tfap2A) (Chung et al., 2009; Leto et al., 2006; Zainolabidin et al., 2017). We found that IntA Ucn3 neurons express vGluT2, SMI32, and TBR1, but not GAD67, Calretinin, or Tfap2A (Figures 2D–2F, 2H–2J, and 2K–2Y; Table S1). Even though TBR1 colocalizes with IntA Ucn3 neurons (TBR1 + YFP ON/YFP ON = 99% ± 1%), the level of TBR1 expression is lower in the IntA compared to the medial nucleus, consistent with previous descriptions (Figures S1E–S1I) (Chung et al., 2009). IntA Ucn3 neurons make up ~45% of all vGluT2 + presumptive glutamatergic neurons in the IntA (Figure 2G). Thus, using Ucn3::Cre mice, we are able to selectively label a subpopulation of glutamatergic neurons in the IntA that have distinct electrophysiological, morphological, and molecular features. Furthermore, by characterizing the recombination ability of Ucn3::Cre mice, we are able to manipulate neurons defined by Ucn3::Cre in the cerebellum.

Intra- and Extra-cerebellar Connectivity of Neuronal Subpopulations in the IntA

IntA Ucn3 Neurons Send NC-MFs to a Restricted Region of the Cerebellar Cortex

To define targets of IntA Ucn3 neurons, we analyzed their axonal projections in Ucn3::Cre; Rosa26::ChrR2 mice. Even though Ucn3::Cre mice permit specific targeting of neurons in the IntA (Figure 1), recombination occurs in the amygdala and hypothalamus, and axons from these regions could interfere with our analysis
Therefore, we injected AAV2-hSyn::mCherry and AAV2-hSyn::ChR2-mCherry into the IntA of Ucn3::Cre; Rosa::ChR2 mice to distinguish between IntAUcn3 neurons (YFP+mCherry+, yellow) and non-IntAUcn3 neurons (mCherry+, red) (Figures 3A–3C). We labeled 24% of IntAUcn3 neurons with mCherry and found that IntAUcn3 neurons make up 50% of all mCherry+ neurons (Table S2). Using this strategy, we were able to differentiate projections from IntAUcn3 neurons and those from non-IntAUcn3 neurons. However, one limitation of this double-labeling strategy is that because 8% of IntAUcn3 neurons were not labeled with mCherry, we are only able to analyze the projection patterns of most IntAUcn3 neurons.

To explore potential distinctions in IntA NC connectivity, we analyzed the colocalization of NC-MFs across cortical lobules with vGluT1/2. While MFS in the internal granular layer (IGL) of the cerebellum differentially express vGluT1 and vGluT2 (Hioki et al., 2003), MFS derived from NC neurons only express vGluT2 (Gao et al., 2016). We found that NC-MFs from IntAUcn3 neurons express vGluT2, but not vGluT1 (Figures 3D–3G) (data not shown). NC-MFs from IntAUcn3 neurons are located primarily in the IGL of lobules IV and V and simple lobule (Sim) close to Purkinje and Golgi cell somata (Figures S2L–S2O; Table S3). Consistent with previous work, we observed a preferential targeting of NC-MFs to the Zebrin− microzone and to the superficial region in the IGL (Figures 3H–3K and S2L–S2O) (Gao et al., 2016). We observed that IntAUcn3 NC-MFs show selective targeting to the anterior, but not the posterior, forelimb region based on modules defined by olivo-cortico-nuclear connectivity.
Figures 3L and 3M (Voogd et al., 2003). These results indicate that IntAUcn3 neurons comprise a subset of IntA neurons that projects to a restricted region of the cerebellar cortex distinct from other IntA neurons. Together, we introduce a genetic method to monitor and manipulate a subpopulation of IntA NC neurons that has been implicated in amplification of ef-

ference copy signals (Beitzel et al., 2017; Gao et al., 2016; Houck and Person, 2015).

Figures 3L and 3M (Voogd et al., 2003). These results indicate that IntAUcn3 neurons comprise a subset of IntA neurons that projects to a restricted region of the cerebellar cortex distinct from other IntA neurons. Together, we introduce a genetic method to monitor and manipulate a subpopulation of IntA NC neurons that has been implicated in amplification of ef-

ference copy signals (Beitzel et al., 2017; Gao et al., 2016; Houck and Person, 2015).

IntAUcn3 Neurons Send Extensive Projections to the VA-VL Thalamus Linked to the CFA of M1

We next analyzed the targets of IntAUcn3 neurons by comparing the extracerebellar projection patterns of IntAUcn3 and non-IntAUcn3 neurons with projections from all IntA neurons. Labeled puncta in target regions colocalize with vGluT2, except in the dorsal nucleus of the inferior olivary complex (IOD), indicating that they represent synaptic terminals (Figure S3). The terminal distribution patterns in six regions traced from distinct subpopulations of neurons are converted into a heatmap coding for minimum and maximum percentage values and organized from lowest to highest incidence of puncta (Figures 4A and S3; Table S4). Even though both IntAUcn3 and non-IntAUcn3 neurons project to the same regions, puncta originating from each population are differentially distributed (Figures 4A and S3). In the descending pathway, toward the brain stem, we found sparse mCherry+ puncta in the IOD and Lateral reticular nucleus (LRt), consistent with studies in the cat (Figures S3A and S3B,
IOD; Figures S3G and S3H, lateral reticular nucleus; Table S4) (Teune et al., 2000). Less than 15% of total mCherry puncta were found in each of these two regions; furthermore, a scant C24\% of these mCherry+ puncta in the IOD and LRt belonged to IntAUcn3 neurons (Figures 4A n dS3; Table S4).

Next, we assessed the projections in brain regions in the ascending pathway, toward the midbrain and forebrain. We observed mCherry puncta on the contralateral side in the magnocellular portion of the red nucleus (RN) (red nucleus magnocellular part [RMC]) (Figures S3I and S3J), intermediate gray layer of the superior colliculus (InG) (Figures S3E and S3F), ventral part of the zona incerta (ZIV) (Figures S3C and S3D), and the ventral anterior-ventral lateral (VA-VL) thalamus (Figures S3K–S3S). The Int nucleus sends extensive projections to the RN and the VA-VL (Teune et al., 2000). Consistently, >50% of all mCherry+ puncta are found in the RMC and VA-VL (Figure 4A; Table S4). When these puncta are separated into IntAUcn3 puncta (mCherry+/YFP+, yellow) and non-IntAUcn3 puncta (mCherry+/YFP−, red), we find a greater proportion of IntAUcn3 puncta within the VA-VL (Figure 4B; Table S4).

Our genetic and viral tract tracing results reveal that neurons in the IntA differentially project to distinct extra-cerebellar targets and that the IntAUcn3 neurons preferentially project toward the VA-VL.

To map the contribution of IntAUcn3 neurons to the cerebello-thalamo-cortical pathway, we analyzed the termination site within molecular and morphological distinct subregions of the VA-VL (Figure 4B) (Kuramoto et al., 2011). The VA-VL is subdivided into a region containing a high density of large vGluT2 puncta (vGluT2L) and a region containing a low density of small vGluT2 puncta (vGluT2S) (Figures 4H, S3L, and S3P) (Kuramoto et al., 2011). In addition, Calbindin (CB) is expressed by neurons in the vGluT2S region and in a small zone within the vGluT2L region (Figures 4Ea and 4J) (Kuramoto et al., 2011). We observed a high coincidence of puncta from IntAUcn3 neurons in the CB− region (Figures 4C–4F). Moreover, we observed that these terminals reside in a subregion of the vGluT2L and CB− zone (Figures 4G–4J).

Because neurons in the vGluT2L CB− zone send extensive projections to the motor and sensory cortex (Kuramoto et al., 2009, 2011), we injected cholera toxin subunit B (CTB) conjugated with fluorophore-555 into the caudal forelimb area (CTB) conjugated with fluorophore-555 into the caudal forelimb area (CTB) conjugated with fluorophore-555 into the caudal forelimb area (CTB) conjugated with fluorophore-555 into the caudal forelimb area (CTB) conjugated with fluorophore-555 into the caudal forelimb area (CTB) conjugated with fluorophore-555 into the caudal forelimb area (CTB) conjugated with fluorophore-555 into the caudal forelimb area (CTB) conjugated with fluorophore-555 into the caudal forelimb area. We observed that these terminals reside in a subregion of the vGluT2L and CB− zone (Figures 4G–4J).
close to YFP+ fibers from IntAUcn3 neurons (Figures 4M and 4N), suggesting that IntAUcn3 neurons form contacts with neurons projecting into the forelimb motor command center of the cortex (Tennant et al., 2011). We have not determined whether IntAUcn3 neurons that make up the NC-MF pathway are the same neurons as those that make up the cerebello-thalamo-cortical pathway. Thus, our mapping analysis indicates that IntAUcn3 neurons have a distinct intra- and extra-cerebellar connectivity pattern compared to non-IntAUcn3 neurons. Moreover, we define specific downstream circuit elements that could serve as substrate for IntAUcn3 neurons to mediate complex and coordinated responses for limb movement and locomotion.

Consequences of the Ablation of IntAUcn3 Neurons on Discrete and Rhythmic Forelimb Movement

Ablation of IntAUcn3 Neurons Perturbs the Accuracy of Skilled Forelimb Reaching

To assess the requirement of IntA neurons targeted by Ucn3::Cre mice in mediating limb movements, we used a chemogenetic method to selectively eliminate these neurons. Conventional deletion of Ucn3 results in amygdala-dependent social deficits without disrupting general motor activities (Shemesh et al., 2016). We unilaterally injected AAV2-EF1a::double-floxed-DTR-eGFP into the DCN of Ucn3::Cre reporter mice (Figures 5A and S4C). One to two weeks after injection, a subset of TBR1+ IntA neurons expressed diphtheria toxin receptor (DTR)-eGFP (Figures 5B and S4C–S4E). We administered diphtheria toxin (DT) 21 days after the initial injection of the virus and observed a ~30% reduction in number of TBR1+ neurons 7–21 days after DT treatment, indicating near-complete elimination of IntAUcn3 neurons in the IntA (Figures 5B and S4F–S4H). To address potential perturbation in gross motor coordination, IntAUcn3-ablated mice were tested in the open field and on the rotating rod. The total distance traveled and average velocity in the open field, as well as performance on the rotating rod, were comparable in ablated mice compared to control (Figures S4I–S4K).

To explore the involvement of IntAUcn3 neurons in discrete forelimb movements on the ipsilateral side of ablation, we trained mice in a staircase reaching task (Figure 5C) (Klein and Dunnett, 2012). The staircase reaching task is similar to the single-pellet reaching task for assessment of the ability and kinematics of skilled reaching in mice (Klein and Dunnett, 2012). We found that ablated mice were less successful at acquiring food pellets compared to control (Figure 5D; Movies S1 and S2). To assess which aspects of skilled reach is affected by the ablation, we categorized the task into reach, grasp, and retrieve phases 21 days after the initial injection of the virus and observed a ~30% reduction in number of TBR1+ neurons 7–21 days after DT treatment, indicating near-complete elimination of IntAUcn3 neurons in the IntA (Figures 5B and S4F–S4H). To address potential perturbation in gross motor coordination, IntAUcn3-ablated mice were tested in the open field and on the rotating rod. The total distance traveled and average velocity in the open field, as well as performance on the rotating rod, were comparable in ablated mice compared to control (Figures S4I–S4K).

To explore the involvement of IntAUcn3 neurons in discrete forelimb movements on the ipsilateral side of ablation, we trained mice in a staircase reaching task (Figure 5C) (Klein and Dunnett, 2012). The staircase reaching task is similar to the single-pellet reaching task for assessment of the ability and kinematics of skilled reaching in mice (Klein and Dunnett, 2012). We found that ablated mice were less successful at acquiring food pellets compared to control (Figure 5D; Movies S1 and S2). To assess which aspects of skilled reach is affected by the ablation, we categorized the task into reach, grasp, and retrieve phases.
and analyzed each separately (Figure 5E, inset). We discovered that ablated mice exhibited a greater than two-fold increase in reaching errors compared to control, but their abilities to grasp and retrieve food pellets were unaffected (Figure 5E).

To examine the positioning of forelimb movement during the reaching phase in more detail, we plotted the endpoints relative to the pellet in the xy plane of their reach attempts and the angle between the paw and the pellet. We found that control mice reach for the pellet in a near-straight path directly on top of the pellet, with errors evenly distributed between under- and overreach (Figure 5F; Movie S1). Ablated mice, however, reached farther before retrieving the pellet (Figure 5F; Movie S2). Quantification of the angle of deviation of the paw from the pellet during the reach phase reveals that while control mice show close to zero deviation from the pellet, ablated mice show ~25° deviation from the pellet in the overreach direction (Figure S4L). The position and angle of the animal’s nose during reach were comparable between IntAUcn3-ablated and control mice, indicating both groups positioned themselves similarly (Figure S4M) (data not shown). Thus, ablation of IntAUcn3 neurons appears to disrupt accuracy of reaching a target, while other aspects of prehension remain unaffected. Moreover, loss of IntAUcn3 neurons results in mistargeting of the forelimb past the intended goal, indicating a requirement of these neurons in accurate limb positioning.

Ablation of IntAUcn3 Neurons Perturbs the Timing of Locomotor Movement

To determine whether IntAUcn3 neurons similarly control forelimb positioning in rhythmic movement, control and IntAUcn3-ablated mice were tested in a directed locomotor task, and the movement kinematics of only the ipsilateral forelimb were analyzed in detail across each stride. We designed and built a transparent corridor that restricts movement of mice in only one direction (Figure 6A). Mouse limb stride during locomotion can be divided into a stationary stance phase and a dynamic swing phase (Figure 6B) (Machado et al., 2015). Based on flexion and extension at the wrist joint reported in cats (Engberg and Lundberg, 1969), we further divided the swing phase into swing-flex and swing-extend (Figure 6B).

To investigate the role of IntAUcn3 neurons in paw positioning during locomotion, we traced trajectories of the paw across the swing phase of the stride (Figure 6C). Along the horizontal axis, x displacement (Δx) of the paw for each stride was consistent between control and ablated mice, indicating that paw placement at the end of each stride is conserved in the absence of IntAUcn3 neurons (Figure 6D). Furthermore, Δx over time remained unchanged, indicating that movement along the horizontal axis throughout the duration of the stride is maintained (Figure 6E). When plotted over time, we observed that y positioning is affected in the initial component of the swing phase, resulting in an aberrant pattern of walking, although the changes in y displacement at different stages of the swing phase did not reach statistical significance (Figures 6C and 6G–6I).

Because changes in the position of the limb during a stride could, in principle, be influenced by changes in the timing of the movement, we next compared the duration of the strides between control and ablated mice. We found that ablated mice take significantly less time to complete each stride (Figure 6J). When the stance and swing phases were analyzed separately, we found that time spent in the stance phase was significantly lower, resulting in an increase in cadence (Figures 6K–6M). The time spent in the earlier swing-flex phase is also reduced in the ablated mice (Figure S4O). These results indicate that IntAUcn3 neurons are required for timing of movements necessary for the progression through distinct phases of the stride. Changes in timing of the stride result in an overall increase in cadence,
which influences the rhythmicity of locomotion. We observed consistent changes in hindlimb kinematics of ablated mice, indicating that IntAUcn3 neurons may directly, or indirectly, regulate aspects of the hindlimb (Figures S4U–S4X). Together, results from ablation of IntAUcn3 neurons indicate that they regulate the timing of forelimb movement and stride trajectory and are required for precision of both discrete and rhythmic movement.

Photostimulation of IntAUcn3 Neurons Disrupts the Positioning of Forelimb Movement during Locomotion

Acute manipulation of Purkinje cells in the simple lobule drives limb movement, presumably through influences on multiple neuronal subtypes in both Int and medial nuclei (Lee et al., 2015; Witter et al., 2013), but whether direct manipulation of a specific neuronal population in the IntA regulates limb movement has not yet been examined. Because we observed that ablation of IntAUcn3 neurons disrupts specific forelimb kinematic parameters during locomotion, we set out to assess how stimulation of these neurons might influence these same parameters. We expressed ChR2 selectively in IntA neurons by generating Ucn3:Cre; Rosa::ChR2 mice and assessed the photoexcitability of ChR2-expressing IntAUcn3 neurons in cerebellar slices. Upon light stimulation, ChR2-eYFP glutamatergic neurons, but not presumptive GABAergic neurons, increased their firing frequency more than two-fold (Figures S5A–S5D, normalized frequency). To assess the behavioral consequence of stimulating IntAUcn3 neurons, we delivered light through optical fibers unilaterally implanted in the DCN and analyzed the effect of photostimulation on kinematics of the ipsilateral forelimb using the locomotor task described earlier (Figures 6A and 6B).

We recorded mice walking through the corridor during photostimulated and non-photostimulated trials (Movies S3 and S4). Stimulation of IntAUcn3 neurons at 1, 5, and 20 Hz (1–10 mW) did not result in forelimb movement in mice at rest, indicating that under the conditions examined, IntAUcn3 neurons do not appear to have the ability to initiate forelimb movement (data not shown). We also did not observe changes in forelimb movement in photostimulated trials of Rosa::ChR2 control mice (data not shown). A closer examination of the individual strides shows that the forelimb trajectories were modified during stimulation (Figure 7C). While we found no significant difference in Δx, similar to IntAUcn3-ablated mice, we saw a >50% increase in y displacement (Δy) (Figures 7D and 7F). In addition, when plotted over time, only Δy is affected (Figures 7E and 7G). Analysis of the swing-flex and swing-extend phases revealed a significant increase in both phases (Figures 7H and 7I). In contrast to the phenotype in which the forelimb of IntAUcn3-ablated mice prematurely reached its maximum height, stimulation of IntAUcn3 neurons results in an increase in Δy in both swing-flex and swing-extend phases (Figures 7H, 7I, and S4R). Moreover, the resulting maximum height of the forelimb after photostimulation is greater than without it (Figure S5I). Analysis of the onset of stimulation at different stride phases revealed that the onset of stimulating IntAUcn3 neurons during
the early- or mid-swing phase, but not the late-swing phase, is able to result in a significant increase in D_y (Figures S5M–S5P).

To assess the impact of the higher D_y in both swing-flex and swing-extend phases during photostimulation, we measured the duration of each stride with or without photostimulation. Although photostimulation of IntAUcn3 neurons results in an increase in stride duration, leading to a decrease in cadence, these changes did not reach statistical significance (Figures 7J–7M, S5G, and S5H). Photostimulation of IntAUcn3 neurons results in consistent changes in hindlimb kinematics (Figures S5Q–S5T), suggesting IntAUcn3 neurons are capable of regulating the hindlimb. In summary, results from the ablation and photostimulation of IntAUcn3 neurons indicate that IntA neurons are necessary and sufficient to control vertical positioning or timing of forelimb movements and ensure the precision of both discrete and rhythmic limb movements.

DISCUSSION

The cerebellum plays an important role in real-time processing of sensory and motor signals for error detection and correction, predictive control, and coordination of limb movements (Ito, 2006), but the functional relevance of the DCN is not well understood. Using a mouse line with previously unknown recombination capability in the cerebellum, we were able to assess the properties and connectivity of a genetically accessible subpopulation of neurons within the IntA. Moreover, we examine the consequences of manipulating these neurons on skilled reach and locomotion. Our results suggest that target selectivity may be a key distinguishing property among neuronal subpopulations in the DCN and illustrate the diversity and complexity of intra- and extra-cerebellar connections made by the DCN. We discuss how IntA neurons ensure accuracy in complex, goal-directed limb movements.

Functional Significance of the Intra- and Extra-cerebellar Connectivity of Neurons in the IntA

Although the cerebellar cortex is organized topographically to some extent, the DCN contains overlapping receptive fields (Jusisaari and De Schutter, 2011). Thus, neuronal subpopulations in the DCN are likely involved in regulation of diverse aspects of movement. The cerebellum integrates sensory information and internal motor commands to refine ongoing motor activity, primarily via cerebello-thalamo-cortical and cerebello-rubro-spinal pathways (Franklin and Wolpert, 2011; Horne and Butler, 1995; Keifer and Houk, 1994). Our results indicate that IntAUcn3 neurons have the ability to influence movement through both pathways, but predominantly project to the cerebello-thalamo-cortical pathway, and that the differential innervation patterns by glutamatergic projection IntA neurons provide means to regulate specific sets of motor activities.

The specificity of intra-cerebellar targets by neurons in the IntA reveals insights to organization and functional significance of these neurons. We observed that IntAUcn3 neurons send NC-MFs primarily to lobules IV to V and the simple lobule, while...
other IntA neurons send additional NC-MFs to Crus1 and Crus2 (Figure 3L). Based on delineations by olivo-cortico-nuclear connectivity, these lobules represent the forelimb subdivision of the cerebellum (Voogd et al., 2003). Lobules IV–V and the simple lobule receive MFs from the forelimb and hindlimb through cuneocerebellar and spinocerebellar tracts, respectively, and limited MFs from vestibular and trigeminal nuclei (Altman and Bayer, 1997). In addition, there is a convergence of MFs in lobules I–V from LRT neurons that receive internal copies of motor signals from propriospinal neurons (Alstermark and Ekerot, 2013; Altman and Bayer, 1997; Azim et al., 2014a). Within this general region, lobules I–III receive MFs from the LRT that are carrying information from the hindlimb, whereas lobules IV and V receive MFs that are carrying information from the forelimb (Altman and Bayer, 1997). Thus, the specific targeting of NC-MFs from IntA^{Lcn3} neurons suggests that these neurons represent elements of an internal feedback circuit and relay signals that converge with forelimb movement-related information from the spinal cord to modify these sensory and motor signals.

Mapping the precise extra-cerebellar target regions by IntA^{Lcn3} neurons also provides clues to the nature of their influence. For example, neurons in the VA-VL extensively project to cortical targets, including limb, whisker musculature, and frontal association areas (Kuramoto et al., 2009, 2011); neurons in the CB⁺ zone project to layers II–V, while neurons in the CB⁻ zone project to layer I (Kuramoto et al., 2009). Stimulation of the DCN and VA-VL results in an early excitatory postsynaptic potential response in the deep layers of the primary motor cortex (Yamamoto et al., 1979). Thus, our tract tracing results suggest that IntA^{Lcn3} neurons may influence a fast-conducting class of cortical-projecting VA-VL neurons. In addition, cortical neurons in the CFA of the motor cortex have been demonstrated to selectively activate a short latency effector pathway for the control of limb movements (Altman and Bayer, 1997). Therefore, the activities of neurons in the DCN are indirectly linked to cortical targets, including limb, whisker musculature, and frontal association areas (Kuramoto et al., 2009, 2011); neurons in the CB⁻ zone project to layers II–V, while neurons in the CB⁺ zone project to layer I (Kuramoto et al., 2009). Stimulation of the DCN and VA-VL results in an early excitatory postsynaptic potential response in the deep layers of the primary motor cortex (Yamamoto et al., 1979). Thus, our tract tracing results suggest that IntA^{Lcn3} neurons may influence a fast-conducting class of cortical-projecting VA-VL neurons. In addition, cortical neurons in the CFA of the motor cortex have been demonstrated to selectively activate a short latency effector pathway for the control of skilled reaching movements (Mii et al., 2017). The elucidation of a subset of IntA neurons, which indirectly targets the CFA via VA-VL, provides a specific circuit element through which the IntA may differentially influence patterns of cortical activity and perhaps contribute to the recruitment of motor effector pathways to modulate cortical commands.

Role of the IntA in Coordination of Voluntary Limb Movement

The cerebellum is thought to integrate internally directed copies of motor commands with current sensory status to provide predictive online refinement throughout the movement (Bastian, 2006; Franklin and Wolpert, 2011). DCN neurons, as last-order neurons in the cerebellum, have been implicated in refinement of forelimb movements in goal-oriented behavioral tasks in cat and monkey (Bracha et al., 1999; Küper et al., 2011; Monzée et al., 2004). However, the requirements of distinct components of the cerebellar nuclei for control of forelimb movements have not been examined in mice. The primary challenge lies in the difficulty of specifically targeting neuronal subpopulations within the DCN and the lack of established quantifiable assays for reaching and grasping in mice. Studies describing the kinematics of skilled forelimb movement and locomotion in mice provide the foundation for our interrogation of the role of the DCN in mediating these processes (Azim et al., 2014b; Esposito et al., 2014; Fink et al., 2014; Klein and Dunnett, 2012; Machado et al., 2013). The identification of the Ucn3::Cre mouse line presents an opportunity to assess the functional relevance of a neuronal subpopulation in the DCN in behaviorally relevant contexts.

The activities of neurons in the DCN are indirectly linked to muscle control, and stimulation of specific elements of the DCN results in changes in muscle tone (Ebner et al., 2011). In monkey, electrophysiological recordings and stimulation in the Int and dentate/lateral nuclei indicate that activities in these nuclei primarily influence ipsilateral movement (Harvey et al., 1979; MacKay, 1988). In human and cat, recordings and stimulation of the Int nucleus reveal its involvement in activation of flexor and inhibition of extensor muscle activities (Armstrong and Edgley, 1984; Nashold and Slaughter, 1969). Thus, a plausible role for IntA^{Lcn3} neurons is to regulate positioning of forelimb movement in mice through coordination of the ipsilateral flexion movement. Our observation that the absence of IntA^{Lcn3} neurons results in the premature arrival of the limb at the maximum vertical position of the stride suggests IntA^{Lcn3} neurons may participate in gating the onset of flexion (Figure S4R). In support of this notion, analysis of the locomotor kinematics of Purkinje cell degeneration (Pcd) mice, a widely used cerebellar disease mouse model, revealed that while stride parameters were not disrupted, the vertical displacement of the forelimb is significantly increased (Machado et al., 2015; Mullen et al., 1976). Together, the selective perturbation in vertical displacement due to loss of Purkinje cells or neurons in the DCN may disrupt coordination of movements across joints within the limb, consistent with patients with cerebellar damage (Bastian et al., 1996).

Representation of movement kinematics is encoded in the DCN (Ebner et al., 2011). It has been long presumed that cerebellar output is necessary for well-timed movements (Ivry et al., 2002), but whether temporal information is encoded in the DCN and how this information is decoded by effectors are not well understood. Besides the activity of Purkinje cells, limited information is available on the role of cerebellar neuronal subtypes in timing of motor events. Recordings in monkeys revealed that activities from the Int and dentate or Lat nuclei precede movements (Thach, 1978), while activity in the fastigial or medial nucleus lags the onset of movement (Bava et al., 1983). In addition, speed and velocity influence neuronal discharge in the Int and dentate/lateral nuclei in cat and monkey (Soechting et al., 1978; van Kan et al., 1993). We show that through the control of onset and extent of forelimb positioning, IntA^{Lcn3} neurons have the ability to influence the timing of limb movements. In addition, the dysmetria-like overreach exhibited by mice lacking IntA^{Lcn3} neurons indicates that these mice are unable to regulate the timing of movement necessary for accurate forelimb targeting, supporting a proposed braking role of the IntA from studies in cats (Ekerot et al., 1997). Consistent with the notion that the cerebellum controls and corrects ongoing motor activities, our study links a subpopulation of glutamatergic IntA neurons and its unique intra- and extra-cerebellar circuitry with coordination of precise and effective movement.
EXPERIMENTAL PROCEDURES

Mouse Strains
C57BL/6Jinm (The Jackson Laboratory), urocortin 3::Cre (Ucn3::Cre; Mutant Mouse Regional Resource Center; Tg[Ucn3-cre]KF31Gsat/Mmucd (Harris et al., 2014), and Rosa::eGFP (B6;129-Glt[Rosa]26Sortm2Sho/J), Rosa::lox-stop-lox-ChR2-eYFP (A32) (B6.Cg-Gt[Rosa]26Sortm32[CAG-COP4* H134R/EYFP]Hze/J), and Rosa::lox-stop-lox-hChR2 (H134R)-tdTomato (A27) (B6.Cg-Gt[Rosa]26Sortm27.1[CAG-COP4*H134R/tdTomato]Hze/J) (The Jackson Laboratory) were obtained. Male and female wild-type and genetically modified mice were used. Adult mice age post-natal day (P) 60 to P120 were used for all experiments. Only heterozygotes were used for each transgene allele. All procedures performed were approved by the NTU/A*STAR Biological Resource Center Institutional Animal Care and Use Committee (IACUC).

Statistics
Comparable numbers of strides per animal of each parameter in control and ablated animals were analyzed to avoid disproportionate effect on the results. Similarly, for photostimulation experiments, equal numbers of strides from each animal during the on and off conditions were used for statistical comparison. Values are represented as mean ± SEM unless otherwise noted. Comparisons were made by unpaired Mann-Whitney U test. Only non-parametric tests were used. The p values for comparisons across more than two groups were calculated using ANOVA. Statistics were analyzed using GraphPad Prism v.7.00 (GraphPad, La Jolla, California, USA). For complete procedures, see Supplemental Information.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures, five figures, five tables, and four movies and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.02.017.

ACKNOWLEDGMENTS
We are grateful to S. Ray for MATLAB scripts and A. Tashiro for EF1a::DF-DTR-GFP. We thank C. Koh, H. Ho, and M. Wong for technical assistance. J.N. Betley, T.H. Ch’ng, M. Featherstone, S.H.S. Je, H. Makino, and A. Tashiro provided comments on the manuscript. Work was supported by the Singapore National Medical Research Council (0075/2014) and Singapore Ministry of Education (RG124/15).

AUTHOR CONTRIBUTIONS
A.Y.T.L., A.R.T., A.K.K.Y., and A.I.C. designed the studies and prepared the manuscript, with comments from all authors. A.Y.T.L., A.R.T., and A.K.K.Y. contributed equally to all experiments and analysis of the data and are listed in alphabetical order. K.L.L.W. and M.T. helped with behavioral analysis. J.K. and G.J.A. performed electrophysiological experiments and analyzed the data. In alphabetical order. K.L.L.W. and M.T. helped with behavioral analysis. J.K. and G.J.A. performed electrophysiological experiments and analyzed the data.

DECLARATION OF INTERESTS
All authors declare no competing financial interests.

Received: August 30, 2017
Revised: November 27, 2017
Accepted: February 2, 2018
Published: February 27, 2018

REFERENCES
characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits 8, 76.