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We study the relation between the maximal violation of Svetlichny’s inequality and the mixedness of quantum
states and obtain the optimal state (i.e., maximally nonlocal mixed states, or MNMS, for each value of linear
entropy) to beat the Clauser-Horne-Shimony-Holt and the Svetlichny games. For the two-qubit and three-qubit
MNMS, we showed that these states are also the most tolerant state against white noise, and thus serve as valuable
quantum resources for such games. In particular, the quantum prediction of the MNMS decreases as the linear
entropy increases, and then ceases to be nonlocal when the linear entropy reaches the critical points 2/3 and
9/14 for the two- and three-qubit cases, respectively. The MNMS are related to classical errors in experimental
preparation of maximally entangled states.
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I. INTRODUCTION

Arising initially from the debate on the incompleteness
of quantum mechanics [1], quantum nonlocality or more
correctly speaking, a nonlocal realistic description of nature,
is now a valuable resource in many aspects of quantum
information science [2,3]. Quantum nonlocality is witnessed
by the violation of Bell-type inequalities, and these inequalities
generally admit local-hidden-variable (LHV) models [4,5],
and they arguably provide some of the most intriguing features
of quantum mechanics.

There have been many investigations on Bell-type inequal-
ities for quantum systems of arbitrary parties and dimensions
[6–10]. Inequalities involving many-body correlations are im-
portant since such correlations dominate the condensed matter
of many-body physics. For multipartite systems, the issue of
quantum nonlocality is rather subtle. One such subtlety arises
naturally within the context of determining if the nonlocality of
an N -qubit system is intrinsically related to genuine N -qubit
correlations, or just simply a convex combinations of nonlocal
correlations within subsystems. Another interesting question
pertains to whether quantum theory always admits nonlocal
features and whether certain subsystems have well-defined
properties. Therefore, it is important to carry out tests for
many-body scenario and see if it is “immune to any explanation
in terms of mechanisms involving fewer bodies” [11]. Genuine
multiparitite entanglement was first explored by Svetlichny
[11] in 1987 where he constructed a family of Bell-type
inequalities, renowned now as Svetlichny’s inequalities, for a
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three-qubit system from hybrid local-nonlocal hidden variable
models. Violation of such inequalities immediately leads to
genuine multipartite nonlocality. In Svetlichny’s inequalities,
all subsystems necessarily participate, with no single subsys-
tem possessing distinctive well-defined properties.

Svetlichny’s inequality (SI) is now widely regarded as a
useful tool for detecting genuine three-qubit nonlocality. Aside
from multipartite scenarios, it has also been extensively studied
for arbitrarily dimensional systems [12–18]. Note that genuine
multipartite nonlocality is not the same as genuine multipartite
entanglement (i.e., full entanglement). The latter describes the
mathematical impossibility of separating a quantum state into
two parts. Put simply, nonlocality and entanglement serve as
differential resources and they are both useful for different
applications in quantum information science.

Unlike the typical Bell-type inequalities, there has been
less research done on SI. There has been little understanding
on SI with mixed states. Exploring systems with mixed state
is essential since environment-induced noise is in general
unavoidable in real experiments. However, with mixed states,
it is generally harder to optimize the use of a quantum resource
with respect to a given measure of mixedness or purity.
There are however some interesting examples like maximally
entangled mixed states (MEMS) and maximally discordant
mixed states (MDMS) [19–21]. Moreover, the borders between
nonlocality, entanglement, and mixedness of states are not
fully characterized yet. Studies on their differences and their
inter-relations may reveal insights for a better understanding
of quantum theory and may possibly lead to new quantum
information applications.

In this paper we investigate the mixed states that, with
respect to a given amount of purity, possess the maximal quan-
tum violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality for two-qubit systems, and of SI for three-qubit
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systems. Such states are shown to be the optimal quantum
resource in the context of quantum nonlocal games: the
CHSH game and Svetlichny’s game, where the optimal states,
compared to any classical strategy, are essential to increase the
probability of winning the games.

The paper is organized as follows. In Sec. II we describe
the general definition of Svetlichny game from a family of
Bell-type inequalities. We present and discuss the optimal state
for the two-qubit CHSH game in Sec. III. Furthermore, we
show the optimal state for the three-qubit Svetlichny’s game
in Sec. IV. We end the paper with a conclusion in Sec. V.

II. THE DEFINITION OF MULTIPARTITE
SVETLICHNY GAME

Nonlocal games serve as an equivalent way of describing
tests for Bell-type inequalities [22–25]. We first introduce
some formal notations to define Svetlichny’s game in an
N -party framework. We also suppose that one referee chooses
an N -bit question

J = i1i2 · · · iN (1)

uniformly from the complete N -bit set, where in = 1,2 (n =
1, . . . ,N ). He then sends J1 = i1 · · · ij to one group with j

players and J2 = ij+1 · · · iN to another with N − j players.
Each player k ∈ {1,2, . . . ,N} must reply with a single bit ak

as an answer to the question ik . They win the game if and only
if the answers

A = a1 · · · aN (2)

satisfy the following criterion:

Mod

[⌊
T

2

⌋
,2

]
=

N⊕
k=1

ak, (3)

with T = T1 + T2, where T1 and T2 denote the times of bit
1 appearing in J1 and J2, respectively, and �x� refers to the
integer part of x.

With these notations, the winning probability of N players
is described as

PrN (win) = 1

2N

∑
J

P

(
Mod

[⌊
T

2

⌋
,2

]
=

N⊕
k=1

ak

)
. (4)

Assuming that all players do not communicate with each
another and that the answer that each player returns is
independent of any other players. For a classical strategy, this
implies that the joint probability is separable, and we write
P (ak|ik) = 1

2 [1 + (−1)akAk,ik ], where Ak,ik ≡ �σ · �nk,ik (with
�nk,ik = {θk,ik ,φk,ik }) is the observable of the kth qubit. The
winning probability (4) becomes

PrN (win) = 1

2N

∑
J ,A

δJAP (a1 · · · aN |i1 · · · iN )

= 1

2N

∑
J

1

2

[
1 + (−1)�

T
2 �A1,i1 · · ·AN,iN

]

≡ 2 + SN

4
, (5)

where SN � 1 is just the form of the N -qubit SI defined in
[11,15]. Hence, δJA = 1 only when the answer A satisfies the
game criterion for each question J , otherwise δJA = 0.

In Eq. (5), the equivalence between the quantum game
and the N -qubit SI is straightforward. Note that for given
questions J and answers A = a1 · · · aN , the joint probability
P (a1 · · · aN |i1 · · · iN ) has nonzero contributions only from the
identity and the full correlation A1,i1 · · ·AN,iN . The other
correlations do not contribute due to the symmetry of the game
criterion under permutation of any pair of players.

In fact, the N -qubit SISN � 1 is a sum of 2N−2 CHSH-type
inequalities Iα � 1 (see Ref. [15] for details). This can be
understood as follows. A group of j observers is denoted as
a single party Alice and similarly the other group of N − j

observers is denoted as Bob. The measuring results in Alice’s
group are independent of those in Bob’s, though observers in
each group may be nonlocally correlated.

As an example, the winning probability (5) for N = 2 can
be expressed as

Pr2 = 1
2 + 1

8 (A11A21 + A11A22 + A12A21 − A12A22)

= 1
4 (2 + S2), (6)

where S2 � 1 is the CHSH inequality. That is, the two-qubit
Svetlichny’s game is just the CHSH game. Since local realism
requires S2 � 1, there is no classical strategy to win the CHSH
game with probability exceeding 75%. However, quantum
mechanics can beat this bound. Consider the maximally
entangled state (|00〉 + |11〉)/√2 shared by Alice and Bob.
There exists a quantum strategy [5] such that the winning
probability reaches 2 + √

2
4 , a quantum upper bound now known

as Tsirelson’s bound for the two-qubit system [26].
Likewise, let us consider the three-qubit Svetlichny’s game:

Pr3 = 1
4 (2 + S3), (7)

where

S3 = 1
4 (A11A21A31 + A11A21A32 + A11A22A31

+A12A21A31 − A11A22A32 − A12A21A32

−A12A22A31 − A12A22A32), (8)

with S3 � 1 being the three-qubit SI. The hybrid local-
nonlocal hidden variable models constrain the winning prob-
ability to be no more than 3/4. However, the genuine
multipartite entanglement and quantum nonlocality can be
used to increase the probability. In fact, considering the GHZ
state 1√

2
(|000〉 + |111〉) and choosing the proper measurement

settings, the maximal amount of S3 in quantum system
equals

√
2, which leads to that the probability of winning

the Svetlichny’s game can attain 2 + √
2

4 .
In the following sections we shall try to explore quantum

games with a generic family of optimal states, in particular, the
genuine maximally nonlocal mixed states (MNMS) character-
ized by maximizing the winning probability in Svetlichny’s
game for a given measure of mixedness of states. We shall use
the linear entropy to quantify the mixedness, then study the
maximal winning probability with knowledge of the CHSH
and Svetlichny’s inequalities.
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FIG. 1. CHSH nonlocality versus linear entropy for two-qubit
states. The red solid curve S2(ρMNMS

2 ) = √
2 − 3EL/2 is for the

MNMS, which maximizes S2(ρMNMS
2 ) for each value of EL (EL �

2/3 so that the CHSH inequality is violated). Pink and blue
areas indicate, respectively, arbitrary two-qubit nonlocal and local
states in the EL-S2 plane. The green dotted curve S2 = √

3 − 3EL

[corresponding to the state (11) with �a = �b = 0 and c3 = 0] denotes
the maximal S2 for each value of EL > 2/3. The blue solid curve
S2 = √

1 − 3EL/2 [corresponding to the states ρ = p|00〉〈00| +
(1 − p)|11〉〈11|] denotes the minimal S2 for each fixed value of
EL � 2/3. For comparison, we also plot the MEMS denoted by
the blue dashed curve S2(ρMEMS

2 ) = (
√

2 + √
2 − 3EL)/2 for EL ∈

[0,16/27] and S2(ρMEMS
2 ) = √

25 − 27EL − min{1,3(8 − 9EL)/2}/3
for EL ∈ (16/27,8/9].

III. THE MNMS FOR THE TWO-QUBIT CHSH GAME

The normalized linear entropy is defined as [27]

EL(ρ) = d

d − 1
(1 − Trρ2), (9)

with d = 2N . As an example, let us first consider the MEMS
[19] given by

ρMEMS =

⎛
⎜⎝

g
γ

2
1 − 2g

0
γ

2 g

⎞
⎟⎠, (10)

with g = 1/3 for γ ∈ [0,2/3), and g = γ /2 for γ ∈ [2/3,1].
Note that γ quantifies the concurrence of the state.

Because we are interested in the region where 〈S2〉 can
be violated by the state, we focus on the domain γ ∈
[2/3,1], in which its linear entropy equals EL = 8

3γ (1 − γ ).
By choosing the measurement directions in the xy plane
and φ11 = 0,φ12 = π/2,φ21 = 7π/4,φ22 = π/4 [see also the
analysis below Eq. (21)], we see that its quantum maximum is
〈S2〉 = 2

√
2γ . In other words, a relation between 〈S2〉 and

EL can be found as S2(ρMEMS
2 ) = (

√
2 + √

2 − 3EL)/2 for
EL ∈ [0,16/27] (see the blue dashed curve in Fig. 1).

We next consider the maximally nonlocal mixed states
(MNMS). In analogy to the MEMS which possesses the largest
entanglement degree for a given linear entropy, we define the
MNMS as a quantum mixed state that possesses the largest
quantum violation of the CHSH inequality for a given linear
entropy, and vice versa, it is also a quantum state that possesses

the largest linear entropy for a given quantum violation of the
CHSH inequality. In the production of maximally entangled
state, this state describes the output ports from a nonlinear
crystal. One way to obtain the generic form of MNMS involves
the optimization of the violation of Bell-type inequalities. but
this method may be very rather involved. Instead, we consider
a simpler yet rigorous method to find the two-qubit MNMS.

In general, a two-qubit state can be written as

ρ2 = 1

4

(
I ⊗ I +

∑
i

riσi ⊗ I

+
∑

j

sj I ⊗ σj +
3∑

m,n

tmnσm ⊗ σn

)
, (11)

where σi is the Pauli matrix. The coefficients (tmn) constitute
a matrix T . The matrix U = T TT is symmetric, so it can be
diagonalized, with λ2

1,λ
2
2,λ

2
3. Here without loss of generality

we have |λ1| � |λ2| � |λ3|.
For state (11), the linear entropy equals

EL(ρ2) = 4

3
(1 − Trρ2)

= 1 − 1

3

[ 3∑
i=1

(r2
i + s2

i ) +
3∑

m,n=1

t2
mn

]
. (12)

Our aim here is to find the MNMS that maximizes the
violation of the CHSH inequality for a certain (12).

As shown in Ref. [28], the maximal violation of the CHSH
inequality with state (11) equals

Max〈S2〉 =
√

λ2
1 + λ2

2. (13)

In order to maximize the linear entropy, according to Eq. (12),
one must minimize Trρ2. Hence it is reasonable to choose as
many of the irrelevant coefficients as possible in (11) to be
zero. It is then shown that the violation determined by λ1 and
λ2 are related to T . For simplicity, suppose U is diagonal.
Hence the simplest U and T , except the zero matrix, read

U =
⎛
⎝λ2

1 0 0
0 λ2

2 0
0 0 0

⎞
⎠, T =

⎛
⎝λ1 0 0

0 λ2 0
0 0 0

⎞
⎠. (14)

Therefore, we obtain a matrix

M = 1

4
[λ1σ1 ⊗ σ1 + λ2σ2 ⊗ σ2], (15)

which maximally violates the CHSH inequality.
However, the matrix M is not a physically allowed density

matrix: the diagonal entries are zero with all nonzero elements
of this matrix in the off-diagonal entries. Given that Trρ2 must
be minimized, in order to make M physical, we can simply
add just four nonzero coefficients to the diagonal entries of M .
By denoting these coefficients as f1, f2, f3, and f4, the new
matrix M ′ can be written as

M ′ =

⎛
⎜⎜⎝

f1 0 0 λ1−λ2
4

0 f2
λ1+λ2

4 0
0 λ1+λ2

4 f3 0
λ1−λ2

4 0 0 f4

⎞
⎟⎟⎠. (16)

022110-3



HONG-YI SU et al. PHYSICAL REVIEW A 93, 022110 (2016)

Since matrix M ′ is physical, it must satisfy the unit trace and
positive definite requirements:

f1 + f2 + f3 + f4 = 1,

f1f4 � (λ1−λ2)2

16 ,

f2f3 � (λ1+λ2)2

16 ,

(17)

together with the condition that the linear entropy must be
maximized:

EL(M ′) = 4

3
− 1

3

[
f 2

1 + f 2
2 + f 2

3 + f 2
4 + (λ1 − λ2)2

16

+ (λ1 + λ2)2

16

]

� 4

3
− 1

3

[
2f1f4 + 2f2f3 + (λ1 − λ2)2

16

+ (λ1 + λ2)2

16

]
. (18)

The sign of equality can be only achieved when f1 = f4 and
f2 = f3, at which Eqs. (17) lead to λ1 = 1. Finally, we obtain
the two-qubit MNMS

ρMNMS
2 =

⎛
⎜⎜⎝

1−λ2
4 0 0 1−λ2

4
0 1+λ2

4
1+λ2

4 0
0 1+λ2

4
1+λ2

4 0
1−λ2

4 0 0 1−λ2
4

⎞
⎟⎟⎠. (19)

This ends the proof.
The form of (19) may seem somewhat abstract. However,

it is very interesting to note that this MNMS can be rewritten
into a new form with intuitive physical meaning, i.e.,

ρMNMS
2 = 1 + γ

2
ρ1 + 1 − γ

2
ρ2, (20)

where γ = λ2 ∈ [−1,1] represents a mixture of two orthog-
onal states ρi = |ψi〉〈ψi |, with |ψ1〉 = 1√

2
(|00〉 + |11〉) and

|ψ2〉 = 1√
2
(|01〉 + |10〉). So the two-qubit MNMS can be

considered as a imperfect Bell state with random spin flipping,
where γ represents a parameter to describe such a flip.
In particular, when γ = 1, Eq. (20) equals the maximally
entangled state; when γ = 0, it becomes a separable state.

For this state, note that the maximum of 〈S2〉 equals√
1 + γ 2 by choosing proper directions, while max EL =

1 − 1
3 (1 + 2γ 2). When the MNMS is applied to the CHSH

game, the winning probability reaches PrMNMS
2 (win) = (2 +√

1 + γ 2)/4, which ranges from 3/4 to (2 + √
2)/4(≈

0.8535), the latter being the quantum upper bound in the game.
In Fig. 1 we consider arbitrary two-qubit states and plot the

S2-EL plane. The MNMS (see the red solid curve) serves as
the optimal state that maximizes S2 for a fixed value of EL.
We also plot the MEMS [19,20] (see the blue dashed line) for
comparison. Apparently the MNMS does not overlap with the
MEMS and is thus a distinct family of states. In Fig. 2 we plot
the winning probability with MNMS and MEMS in the CHSH
game. It is clearly shown that the MNMS serves as an upper
bound of quantum strategy.

MEMS
MNMS
nonlocal states

0.0 0.2 0.4 0.6 0.8 1.0
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pr2

γ

FIG. 2. The quantum winning probability in the CHSH game
versus concurrence γ for the MNMS (red solid curve), MEMS (blue
dashed curve), and arbitrary states (pink region) that violate the CHSH
inequality. Here the concurrence depicts degree of entanglement of
two qubits. If the quantum state shared by Alice and Bob is the
MNMS, the quantum winning probability equals PrMNMS

2 = (2 +√
1 + γ 2)/4, while for the MEMS the winning probability is found

to be PrMEMS
2 = (6 + √

1 + 18γ 2 − min{1,9γ 2})/12 for γ ∈ [0,2/3]
and PrMEMS

2 = (2 + √
2γ )/4 for γ ∈ (2/3,1]. It is clearly shown

that PrMNMS
2 surpasses PrMEMS

2 except γ = 1, at which the MNMS
and MEMS are the Bell states resulting in the largest probability
1
4 (2 + √

2).

IV. THE GENUINE MNMS FOR THREE-QUBIT
SVETLICHNY’S GAME

The genuine MNMS is defined as the optimal state
in Svetlichny’s game for a given value of linear entropy.
According to Eq. (7), such a state must maximally violate
three-qubit SI for a given value of linear entropy. To this
end, we note that similar to Eq. (11), any three-qubit state,
up to local unitary operations, can be expressed in terms of
Pauli matrices, originally defined in Refs. [28,29]. However,
the form of the three-qubit density matrix consists of 63
coefficients, a far more complicated situation than that of a
two-qubit state (11).

For a three-qubit state ρ3, the average value of SI reads

〈S3〉 = Tr(ρ3S3). (21)

The computation of the Tsirelson bounds is in general not
an obvious task. However, the task could be somewhat
simplified for some particular cases: for instance when the
SI can be expressed as a sum of CHSH-type inequalities
[15]. In order to obtain the maximum value for the quantum
system, numerical results show that it is enough to consider
measurement settings Aij confined within the xy plane, i.e.,
Aij ≡ σij = cos φijσx + sin φijσy . The Svetlichny operatorS3

is then a matrix with nonzero terms only in off-diagonal entries,
i.e., 〈S3〉 only depends on off-diagonal terms of ρ3.

As discussed in the previous section for two qubits, the
problem reduces to finding a genuine MNMS that possesses
the maximal linear entropy from the set of states with the same
violation of SI. To this end, we note that the normalized linear
entropy of ρ3 equals EL(ρ3) = 8

7 (1 − Trρ2
3 ). Maximizing this

entropy is equivalent to minimizing the quantity Tr(ρ2
3 ).

022110-4
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Hence, for a fixed violation 〈S3〉, one chooses all irrelevant
terms of the density matrix to be zero, while keeping
the conditions of positive semidefiniteness and trace unity
satisfied. We then obtain a necessary form of the MNMS (see
also [30]):

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 0 0 0 0 0 0 ρ18

0 ρ22 0 0 0 0 ρ27 0
0 0 ρ33 0 0 ρ36 0 0
0 0 0 ρ44 ρ45 0 0 0
0 0 0 ρ54 ρ55 0 0 0
0 0 ρ63 0 0 ρ66 0 0
0 ρ72 0 0 0 0 ρ77 0

ρ81 0 0 0 0 0 0 ρ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(22)
where

ρmm = ρnn =
√

‖ρmn‖2, n = 9 − m. (23)

The justification of the X-shaped form of Eq. (22) is as
follows: The antidiagonal entries can in general be nonvanish-
ing, since with all measurement directions confined within
the xy plane, such entries determine Tsirelson’s bound of
SI. The remaining entries should then be chosen as zeros in
order to minimize Tr(ρ2); however, a matrix with only nonzero
antidiagonal entries is not a physical state. To get a physical
state, diagonal entries with proper values are thus necessary
to make the matrix both have a unit trace and be semipositive
definite. Thus, the MNMS can be shown to be restricted to an
X-shaped form, as shown in Eq. (22).

Finding the genuine MNMS from Eq. (22) is then equivalent
to solving an optimization problem of finding a matrix that
minimizes Tr(ρ2) (or maximizes EL) for each value of 〈S3〉:

ρMNMS
3

{
maximize EL for each 〈S3〉
such that : semipositivity, unit trace

(24)

or that maximizes 〈S3〉 for each value of EL:

ρMNMS
3

{
maximize 〈S3〉 for each EL

such that : semipositivity, unit trace.
(25)

We list the results as follows:

ρ11 = f1 ∈ [
1
8 , 1

2

]
,

ρ22 = ρ33 = ρ44 = f ∈ [
0, 1

8

]
,

f1 + 3f = 1
2 , (26)

which leads to the desired three-qubit genuine MNMS

ρMNMS
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1 0 0 0 0 0 0 f1

0 f 0 0 0 0 f 0
0 0 f 0 0 f 0 0
0 0 0 f f 0 0 0
0 0 0 f f 0 0 0
0 0 f 0 0 f 0 0
0 f 0 0 0 0 f 0
f1 0 0 0 0 0 0 f1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

Let us now take a closer look at the results on ρMNMS
3 . For

this state, the following settings:

φ11 = φ21 = −θ,

φ12 = φ22 = φ31 = θ,

φ32 = π − θ,

θ = arccos

√
1 − 8f

2 − 24f
, (28)

can be used to achieve the quantum maximum value for SI:

〈
SMax

3

〉 = (1 − 8f )3/2(
1
2 − 6f

)1/2 for 0 � f � 1

16
, (29)

〈
SMax

3

〉 = 1 for 1
16 � f � 1

8 . (30)

Note that the genuine MNMS equals the standard GHZ state
at f = 0, achieving the maximal violation

√
2.

The linear entropy of the genuine MNMS equals

EL

(
ρMNMS

3

) = 96
7 f (1 − 4f ). (31)

The quantum maximum value of SI can then be rewritten with
the linear entropy in its argument:

〈
SMax

3

〉 =
(
1 − 1

6w
)3/2

(
1
2 − 1

8w
)1/2 for 0 � EL <

9

14
, (32)

〈
SMax

3

〉 = 1 for 9
14 � EL � 6

7 . (33)

with w = 6 − √
6
√

6 − 7EL (see Fig. 3 for a graphic illustra-
tion).

Obviously when MNMS is applied to three-qubit
Svetlichny’s game, the winning probability ranges from 3

4

to (2+√
2)

4 , similar to the two-qubit MNMS case. A major
difference here is that there is a line of maxima for SI as the
entropy increases between 9/14 and 6/7 (see the green solid
line BD in Fig. 3). In Fig. 3 we plot 〈SMax

3 〉 versus EL(ρMNMS
3 )

with a great number of randomly chosen states, to confirm our
analytic results.

In fact, the genuine MNMS can be understood as a standard
GHZ state subjected to classical errors, namely, X-type errors,
with each spin undergoing bit flip with equal probability. To
be specific, if we first prepare a pure GHZ state for a tripartite
spin-1/2 system

| ψ1〉 = 1√
2

(|000〉 + |111〉) (34)

and allow it to undergo a noisy channel such that the
computational basis states |0〉 and |1〉 are flipped with an equal
probability, say f , one spin at a time (or equivalently, two
spins at a time) so that the initial state becomes one of the
three flipped states

|ψ2〉 = 1√
2

(|100〉 + |011〉), (35)

|ψ3〉 = 1√
2

(|010〉 + |101〉), (36)

|ψ4〉 = 1√
2

(|001〉 + |110〉), (37)
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S3

EL

FIG. 3. The genuine multipartite nonlocality versus the linear
entropy for three-qubit states. Point A corresponds to the GHZ
state (|000〉 + |111〉)/√2, B to the MNMS (27) at EL = 9/14, C to
cos π/8|000〉 + sin π/8|111〉, and D to the MNMS (27) at EL = 6/7.
The red curves AB and BD correspond to the maximal violation of
SI with state (27) for each EL [see also Eqs. (32) and (33)]. The solid
line crossing points B, C, and D is the classical bound. The blue
points represent a great number of randomly chosen states.

with the same probability. The resultant state through the
channel can then be described by

ρMNMS
3 = 2f1ρ1 + fρ2 + fρ3 + fρ4, (38)

where ρi = |ψi〉〈ψi |, yielding nothing but the MNMS (27). It
is apparent that such an analysis also applies to the two-qubit
case (20).

The MNMS serves as a good approximation of maximally
entangled states that undergo classical errors in experimental
preparation of states. We would like to stress that for MNMS,
the influence of environment on pure quantum states is
different from that for the MEMS, for which nonclassical cor-
relations are quantified in terms of entanglement of formation
needed for creating the given state [31]. We believe that the
proposed notion of MNMS may therefore be more practical

than MEMS in many quantum information processes where
classical errors are dominant.

V. CONCLUSION

In summary, we have derived the optimal states, the MNMS,
which provide maximal violation of the CHSH and three-qubit
Svetlichny’s inequality for a given mixedness of states. It has
been clearly shown that the MNMS is distinct from the MEMS,
in that they give comparatively different curves in the S-EL

plane.
For the two-qubit system, the upper bound of linear entropy

of the MNMS can reach 2/3, within which the quantum
strategy will have a chance to beat its classical counterpart,
while for the three-qubit system the value equals 9/14 and, as
a qualitative difference from the two-qubit case, there exists
a terrace in the S-EL plane for EL ∈ [9/14,6/7] (see Figs. 1
and 3 for comparison).

Moreover, we have also pointed out that the MNMS can
be a good representation of maximally entangled states that
have undergone X-type errors, i.e., local spin flips. We also
see that the two-qubit and three-qubit MNMS are tolerant
against white noise, serving as a valuable resource for quantum
information and computation protocols involving Bell-type
nonlocality, such as quantum nonlocal games, Bell’s-theorem-
based quantum cryptography, Bell’s-theorem-based random
number generator, etc. We expect that our method may cast a
new perspective for understanding quantum games for general
mixed states scenarios. Further questions, like the proofs of
MNMS for arbitrarily multiple high-dimensional systems,
remain an open question and we hope that we can investigate
these issues at length in the future.
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