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THE PRIMAL-DUAL SECOND-ORDER CONE APPROXIMATIONS
ALGORITHM FOR SYMMETRIC CONE PROGRAMMING

CHEK BENG CHUA

Abstract. Given any open convex cone K, a logarithmically homogeneous, self-concordant
barrier for K and any positive real number r < 1, we associate, with each direction x ∈ K, a
second-order cone K̂r(x) containing K. We show that K is the interior of the intersection of
the second-order cones K̂r(x), as x ranges over all directions in K. Using these second-order
cones as approximations to cones of symmetric, positive definite matrices, we develop a new
polynomial-time primal-dual interior-point algorithm for semidefinite programming. The
algorithm is extended to symmetric cone programming via the relation between symmetric
cones and Euclidean Jordan algebras.

1. Introduction

This paper considers the idea of approximating convex conic programming (CCP) prob-
lems with simple second-order cone programming (SOCP) problems.

CCP is a generalization of linear programming (LP) in which the nonnegativity constraints
are generalized to the conic constraint x ∈ cl K, where K is a finite-dimensional, open, convex
cone and cl K is its closure. Since every convex programming problem can be homogenized
to a CCP problem, the class of CCP problems represents a very wide class of optimization
problems.

In SOCP, the cone K is a direct sum of second-order cones. For a simple SOCP problem,
K is just a single second-order cone.

The analytical foundation for the study of interior-point methods for CCP was established
by Nesterov and Nemirovski [11] in 1994. Instrumental to their work is a special class of
barriers which they termed logarithmically homogeneous, self-concordant barriers. This class
of barriers captures the essential properties of the standard logarithmic barrier (x1, . . . , xn) 7→
−
∑n

i=1 ln xi responsible for several polynomial-time algorithms for LP.
The Hessian of a logarithmically homogeneous, self-concordant barrier at each x ∈ K

defines an inner product called the local inner product at x (see [15]). Under the metric
induced by the local inner product at x, the open ball of radius r centered at x is contained
entirely in K whenever r < 1. The smallest open cone Kr(x) containing this open ball is a
second-order cone contained entirely in K. We consider using these second-order cones as
local approximates to K. This is an extension of Megiddo’s ellipsoidal cone approximation
[10] for linear programming. See also Padberg [14].

In the context of semidefinite programming (SDP), where K is a cone of symmetric positive
definite matrices, we develop a new primal-dual algorithm that alternates between the primal
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problem and its dual (which is again an SDP problem), solving an approximating simple
SOCP problem at each step. We call this the primal-dual second-order cone approximations
algorithm. This algorithm has a provable polynomial complexity bound that matches the
best bound known for SDP; See [6, 17] for excellent reviews on SDP.

Semidefinite programming is a subclass of symmetric cone programming, which is the
class of CCP problems over symmetric cones (also known as self-dual homogeneous cones or
self-scaled cones). Nesterov and Todd [12, 13] were the first to develop efficient primal-dual
interior-point algorithms for symmetric cone programming using self-scaled barriers. Sym-
metric cones are closely related to Euclidean Jordan algebras. Using the relation between
symmetric cones and Euclidean Jordan algebras, many interior-point algorithms for semi-
definite programming were extended to symmetric cone programming (see [2, 8]). We show
that the primal-dual second-order cone approximations algorithm can also be extended to
symmetric cone programming.

This paper is organized as follows. We begin Section 2 with a brief introduction to the
theory of logarithmically homogeneous, self-concordant barriers. This sets up the discussion
on second-order cone approximations in the second part of the section. In Section 3, we look
at semidefinite programming and its standard logarithmic barrier. We highlight and prove
several properties of the standard logarithmic barrier that are essential to the development
and analysis of the primal-dual second-order cone approximations algorithm for semidefinite
programming. This is followed by the description and analysis of the algorithm, which shows
that the algorithm is polynomial-time. We compare our algorithm with the primal-dual cone
affine scaling algorithm in Section 5. Section 4 is devoted to the extension of the algorithm to
symmetric cone programming. We briefly discuss the relation between symmetric cones and
Euclidean Jordan algebras, and show that this relation provides a simple extension of the
primal-dual second-order cone approximations algorithm. Specifically, through Euclidean
Jordan algebras, we define standard logarithmic barriers for symmetric cones and show that
they possess the same essential properties highlighted in Section 3.

2. Second-Order Cone Approximations

Among all open convex cones, second-order cones form the class of cones that are easiest to
deal with. In fact, every simple SOCP problem can be solved analytically (see Section 3.3).
In this section, we discuss the concept of approximating an arbitrary open convex cone with
a certain class of second-order cones.

Throughout this section, E denotes the Euclidean n-space with inner product 〈·, ·〉 and
induced norm ‖·‖, and K denotes a regular, open, convex cone in E.

2.1. Logarithmically Homogeneous, Self-Concordant Barriers. A convex conic pro-
gramming problem is the optimization (i.e., minimization or maximization) of a linear func-
tional over the intersection of a closed convex cone and an affine subspace. Without loss of
generality, we may assume that the cone is regular, i.e., it has nonempty interior and does
not contain any vector subspace. Mathematically, it can be formulated as

(CPP) inf{〈ŝ, x〉 : x ∈ L + x̂, x ∈ cl K},
where ŝ, x̂ ∈ E, L ⊂ E is a linear subspace and cl K is the closure of K. The Lagrangian
dual problem can be written as

(CPD) inf{〈x̂, s〉 : s ∈ L⊥ + ŝ, s ∈ cl K∗},
2



where K∗ := {z ∈ E : 〈z, y〉 > 0, ∀0 6= y ∈ cl K} is the dual cone of K and L⊥ is the orthog-
onal complement of L.

A functional f : K → R is a (nondegenerate and strongly) ϑ-self-concordant barrier for K
if it is a strictly convex, three-times continuously differentiable functional on K that diverges
to infinity as its argument approaches a point on the boundary ∂K of K, and satisfies

(1) D3f(x)[h, h, h] ≤ 2(D2f(x)[h, h])3/2

and

(2) Df(x)[h] ≤ (ϑD2f(x)[h, h])1/2

for all x ∈ K and h ∈ E. Here, Dkf(x)[h, . . . , h] denotes the k-th directional derivative of f

along h, i.e., dk

dtk
f(x + th)|t=0. The parameter ϑ is called the barrier parameter.

If f further satisfies

(3) f(tx) = f(x)− ϑ ln t

for all x ∈ K and t > 0, then f is called a ϑ-logarithmically homogeneous, self-concordant
barrier for K. It can be shown that if f is convex and two-times continuously differen-
tiable, then (3) implies (2). Hence, we can drop (2) in the definition of a logarithmically
homogeneous, self-concordant barrier. Let g and H denote the gradient and Hessian of f
respectively. It follows straightforwardly from the logarithmic homogeneity of f that

g(tx) =
1

t
g(x), H(tx) =

1

t2
H(x),

H(x)x = −g(x), and 〈−g(x), x〉 = ϑ,

for any x ∈ K and any t > 0.
Logarithmically homogeneous, self-concordant barriers were introduced by Nesterov and

Nemirovski [11]. All results in this subsection were discussed and proven in [11]. Hence, we
do not give proofs nor justifications for these results.

If f is a ϑ-logarithmically homogeneous, self-concordant barrier for K, then it can be shown
that ϑ ≥ 1, and the duality map x 7→ −g(x) takes K onto its dual cone K∗. Moreover, the
functional f ∗ : K∗ → R : s 7→ − infx∈K{〈s, x〉+ f(x)}, which is called the conjugate barrier
of f , is a ϑ-logarithmically homogeneous, self-concordant barrier for K∗. Let g∗ and H∗

denote the gradient and Hessian of f ∗ respectively. Once again, it follows straightforwardly
from the logarithmic homogeneity of f and its conjugate barrier that

f(x) + f ∗(−g(x)) = f(−g∗(s)) + f ∗(s) = −ϑ,(4)

−g∗(−g(x)) = x, −g(−g∗(s)) = s, and(5)

H∗(−g(x)) = H(x)−1, H(−g∗(s)) = H∗(s)−1,(6)

for any x ∈ K and any s ∈ K∗.

2.2. Second-Order Cones and Their Dual Cones. The second-order cone in Rn is the
open, convex cone {

x ∈ Rn : x1 >
√

x2
2 + · · ·+ x2

n

}
.
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Note that the direction d = [1, 0, . . . , 0]T can be considered as the center direction of the
second-order cone. Indeed, under the usual dot product, the angle between d and any
direction along the boundary of the second-order cone in Rn is half a right angle.

In the Euclidean space E, a second-order cone is an open, convex cone of the form

(7) {x ∈ E : 〈d, x〉′ > ‖x− Pr′d x‖′‖d‖′} =

{
x ∈ E : 〈d, x〉′ > 1√

2
‖d‖′‖x‖′

}
,

where 〈·, ·〉′ is an inner product on E, ‖·‖′ is the norm induced by 〈·, ·〉′, d ∈ E is the center
direction, and Pr′d is the orthogonal projection under 〈·, ·〉′ onto the subspace spanned by d.
Once again, the angle (defined by the inner product 〈·, ·〉′) between d and directions along
the boundary of the cone is half a right angle.

For each r ∈ (0, 1), the cone {x ∈ E : 〈d, x〉′ > r‖d‖′‖x‖′} is the second-order cone defined
by the inner product 〈·, ·〉′′ : (x, z) 7→ 〈Mrx, Mrz〉′ and center direction d, where Mr is
the invertible linear operator x 7→ x + ((

√
1− r2/r) − 1) Pr′d x. This can be derived from

Mrd = (
√

1− r2/r)d, and

(‖Mrx‖′)2 = (‖x− Pr′d x +

√
1− r2

r
Pr′d x‖′)2

= (‖x− Pr′d x‖′)2 +
1− r2

r2
(‖Pr′d x‖′)2

= (‖x‖′)2 − (‖Pr′d x‖′)2 +
1− r2

r2
(‖Pr′d x‖′)2

= (‖x‖′)2 +
1− 2r2

r2

(
〈d, x〉′

‖d‖′

)2

,

whence for x 6= 0,

〈Mrd,Mrx〉′ =
√

1− r2

r
〈d, x− Pr′d x +

√
1− r2

r
Pr′d x〉′

=
1− r2

r2
〈d, Pr′d x〉′ = 1− r2

r2
〈d, x〉′

and

‖Mrd‖′‖Mrx‖′ =
√

1− r2

r
‖d‖′

√
(‖x‖′)2 +

1− 2r2

r2

(
〈d, x〉′
‖d‖′

)2

=

√
1− r2

r2
‖d‖′‖x‖′

√
r2 + (1− 2r2)

(
〈d, x〉′
‖d‖′‖x‖′

)2

gives

〈Mrd,Mrx〉′

‖Mrd‖′‖Mrx‖′
=

√
1− r2〈d, x〉′/‖d‖′‖x‖′√

r2 + (1− 2r2) (〈d, x〉′/‖d‖′‖x‖′)2
,

so that
〈Mrd,Mrx〉′

‖Mrd‖′‖Mrx‖′
>

1√
2
⇐⇒ 〈d, x〉′

‖d‖′‖x‖′
> r.
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Thus, our definition of second-order cones includes those whose angle between the center
direction and directions along the boundary of the cone is an acute angle different from half
a right angle.

It is a well-known fact that when 〈·, ·〉′ ≡ 〈·, ·〉, the second-order cone (7) coincides with
its dual cone under 〈·, ·〉. This is stated formally in the following proposition.

Proposition 1. For any d ∈ E, the second-order cone{
x ∈ E : 〈d, x〉 >

1√
2
‖d‖‖x‖

}
coincides with its dual cone.

Corollary 2. For any d ∈ E, any r ∈ (0, 1), and any self-adjoint, invertible, linear operator
L,

{x ∈ E : 〈d, x〉′ > r‖d‖′‖x‖′}∗ =
{

s ∈ E : 〈d, s〉 >
√

1− r2‖Ld‖‖L−1s‖
}

where 〈·, ·〉′ : (x, z) 7→ 〈Lx,Lz〉.

Proof. For each r ∈ (0, 1), let Mr denote the invertible linear operator

x 7→ x +

(√
1− r2

r
− 1

)
Pr′d x = x +

(√
1− r2

r
− 1

)
L−1 PrLd Lx.

As noted in the paragraphs leading to Proposition 1,

(8)

{x ∈ E : 〈d, x〉′ > r‖d‖′‖x‖′} =

{
x ∈ E : 〈LMrd, LMrx〉 >

1√
2
‖LMrd‖‖LMrx‖

}
= M−1

r L−1

{
y ∈ E : 〈Ld, y〉 >

1√
2
‖Ld‖‖y‖

}
where we have used Mrd = (

√
1− r2/r)d. The adjoint operator M∗

r of Mr is

s 7→ s +

(√
1− r2

r
− 1

)
L PrLd L−1s = L2MrL

−2s.

We assumed that L is self-adjoint. Hence the dual of the cone in (8) is

M∗
r L∗

{
y ∈ E : 〈Ld, y〉 >

1√
2
‖Ld‖‖y‖

}∗
= L2MrL

−1

{
w ∈ E : 〈Ld, w〉 >

1√
2
‖Ld‖‖w‖

}
by Proposition 1. Note that the inverse operator of Mr is M√

1−r2 . We then conclude from
(8) that this dual cone is precisely

L2
{

w ∈ E : 〈d, w〉′ >
√

1− r2‖d‖′‖w‖′
}

,

or equivalently,
{
s ∈ E : 〈d, s〉 >

√
1− r2‖Ld‖‖L−1s‖

}
. �
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2.3. Second-Order Cone Approximations. Let f be a ϑ-logarithmically homogeneous,
self-concordant barrier for K and let f ∗ denote its conjugate barrier. Let g (resp. g∗) denote
the gradient of f (resp. f ∗) and let H (resp. H∗) denote the Hessian of f (resp. f ∗).

For each x ∈ K, we define the inner product

〈·, ·〉x : E× E → R : (u, v) 7→ D2f(x)[u, v] = 〈u, H(x)v〉.
This is called the local inner product at x. The induced norm

‖·‖x : u 7→
√
〈u, u〉x =

√
〈u, H(x)u〉.

is called the local norm at x; see [15].
Similarly for the dual cone K∗, the local inner product at s ∈ K∗ is

〈·, ·〉∗s : E× E → R : (u, v) 7→ D2f ∗(s)[u, v] = 〈u, H∗(s)v〉,
and the local norm at s is

‖·‖∗s : u 7→
√
〈u, u〉∗s =

√
〈u, H∗(s)u〉.

For each x ∈ K and each r ∈ (0,
√

ϑ), the local ball of radius r at x is the open, convex set

{z ∈ E : ‖z − x‖x < r} .

It is denoted by Br(x). Nesterov and Nemirovski [11, Theorem 2.1.1] showed that B1(x) ⊂ K
for all x ∈ K.

The smallest open cone containing Br(x) is {z ∈ E : ∃t > 0, tz ∈ Br(x)}. Now tz ∈ Br(x)
for some t > 0 if and only if the quadratic polynomial t ∈ R 7→ t2‖z‖2

x−2t〈x, z〉x +‖x‖2
x− r2

has a positive root. Since the polynomial has value ‖x‖2
x − r2 = ϑ− r2 > 0 at t = 0, it has

a positive root if and only if 〈x, z〉2x > ‖z‖2
x(‖x‖2

x − r2) and 〈x, z〉x > 0. Thus the smallest
open cone can be expressed as{

tz ∈ E : 〈x, z〉x >
√
‖x‖2

x − r2‖z‖x

}
=
{

z ∈ E : 〈x, z〉x >
√

ϑ− r2‖z‖x

}
=
{

z ∈ E : 〈x, z〉x >
√

1− r2/ϑ‖x‖x‖z‖x

}
,

This cone is called the second-order cone of radius r along x and is denoted by Kr(x). It
follows immediately from the preceding paragraph that K1(x) ⊆ K. From Corollary 2,

(Kr(x))∗ =
{

s ∈ E : 〈x, s〉 > r/
√

ϑ‖H(x)1/2x‖‖H(x)−1/2s‖
}

=
{
s ∈ E : 〈−g(x), s〉∗−g(x) > r‖s‖∗−g(x)

}
,

where H(X)1/2 denotes the self-adjoint positive definite square root1 of H(X).
Similarly for the dual cone K∗, we define, for each s ∈ K∗ and r > 0, the dual second-order

cone of radius r along s as the smallest open cone containing the local ball of radius r at s.
It is given by

K∗
r (s) =

{
y ∈ E : 〈s, y〉∗s >

√
ϑ− r2‖y‖∗s

}
.

Since K∗
r (−g(x)) ⊆ K∗ for all x ∈ K and r ∈ (0, 1), we deduce from elementary duality

theory that (K∗
r (−g(x)))∗ ⊇ (K∗)∗ = K. For simplicity of notation, we denote the cone

(K∗
r (−g(x)))∗ = K√

ϑ−r2(x) by K̂r(x).

1For any self-adjoint positive definite linear operator H and any integer p and any positive integer q, we
denote by Hp/q the self-adjoint positive definite linear operator that satisfies (Hp/q)q = Hp.
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Theorem 3. For any r ∈ (0, 1),

K = int(X, S) ∈ K ×K,

where int(X, S) ∈ K ×K denotes interior.

Proof. Since K̂r(x) ⊇ K for all x ∈ K, we have K ⊆
⋂

x∈K K̂r(x). Therefore, it follows that
K ⊆ int(X, S) ∈ K ×K, since K is open.

For the other inclusion, take any z /∈ cl K. Since K = (K∗)∗, there exists s ∈ K∗ such
that 〈z, s〉 < 0. Let x′ = −g∗(s) ∈ K. By (5), s = −g(−g∗(s)) = −g(x′) ∈ K∗

r (−g(x′)).

Together with 〈z, s〉 < 0, we conclude that z lies outside the dual cone K̂r(x
′) of K∗

r (−g(x′)).

Consequently, cl K ⊇
⋂

x∈K K̂r(x). Since K is open, it follows that K ⊇ int(X, S) ∈
K ×K. �

The theorem suggests that we can approximate K by the “simpler” cone⋂
x∈T

K̂r(x),

where T ⊂ K is some finite subset. The approximating problem is a second-order cone
programming problem. Of course, the problem may not be tractable if |T | is large. (In this
case, we may further approximate the second-order cone with a polyhedral cone; see [4].) As
an extreme case, we have |T | = 1, i.e., we approximate K by a second-order cone. We call
the approximations in this extreme case the second-order cone approximations of K.

3. The Primal-Dual Second-Order Cone Approximations Algorithm

One of the most well-studied class of CCP problems is semidefinite programming (SDP),
which is the class of CCP problems over cones of symmetric, positive definite matrices. The
study of SDP is largely motivated by its wide applicability; see [3].

In this section, we apply the concept of second-order cone approximations to SDP. We
develop a primal-dual interior-point algorithm for SDP, and show that for an underlying cone
of n-by-n symmetric, positive definite matrices, the algorithm requires at most O(

√
n ln 1

ε
)

iterations to reduce the duality gap by ε. This complexity bound matches the best bound
known for SDP.

3.1. Semidefinite Programming. Let Sn denote the space of n-by-n symmetric matrices
and 〈·, ·〉 : Sn × Sn → R : (X, Y ) 7→ tr XT Y =

∑n
i,j=1 XijYij denote the trace inner product.

The norm ‖·‖ induced by the trace inner product is the Frobenius norm. A semidefinite
programming problem is the following minimization problem

(SDP ) inf{〈Ŝ, X〉 : X ∈ L + X̂, X ∈ cl Sn
++},

where X̂, Ŝ ∈ Sn, L ⊂ Sn is a vector subspace and Sn
++, the cone of symmetric, positive

definite n-by-n matrices (also called the positive definite cone of order n).
The positive definite cone is self-dual, i.e., (Sn

++)∗ = Sn
++. The Lagrangian dual of the

SDP problem is

(SDD) inf{〈X̂, S〉 : S ∈ L⊥ + Ŝ, S ∈ cl Sn
++}.

7



The standard logarithmic barrier for Sn
++ is X 7→ − ln det X. It is an n-logarithmically ho-

mogeneous, self-concordant barrier. Under the trace inner product, its gradient and Hessian
are, respectively,

g(X) = −X−1 and H(X) : Sn → Sn : U 7→ X−1UX−1.

The duality map is X 7→ −g(X) = X−1. The local inner product at X ∈ K is

〈·, ·〉X : (U, V ) 7→ 〈U,H(X)V 〉 = tr X−1UX−1V,

and the local norm at X is
‖·‖X : U 7→

√
tr((X−1U)2).

Clearly, the local inner product at the identity matrix I is the trace inner product. Conse-
quently, I is a fixed point of the duality map.

In the next proposition, we state several well-known properties of standard logarithmic
barriers for positive definite cones that are essential for the development and analysis of
the primal-dual second-order cone approximations algorithm in subsequent subsections. We
leave the proof of the proposition to the reader.

Proposition 4. Let f be the standard logarithmic barrier for a positive definite cone Sn
++,

and let g and H be its gradient and Hessian respectively. The following are true.

1. The conjugate barrier of f differs from f by an additive constant.
2. For any X, Z ∈ Sn

++, it holds H(X)Z ∈ Sn
++ and

(9) H(H(X)Z) = H(X)−1H(Z)H(X)−1.

3. For any X ∈ Sn
++, there exists X1/2 ∈ Sn

++ such that

(10) H(X1/2) = H(X)1/2.

4. For any X ∈ Sn
++,

(11) H(X)−1/2I = X

5. For any X ∈ Sn
++, there exist positive real constants λ1, . . . , λn such that for p =

1, 2, . . . ,

(12) 〈H(X)−p/2I, I〉 =
n∑

i=1

λp
i .

Proof. For the first statement, direct computation of the conjugate barrier gives f ∗ = f −n.
Let X, Z ∈ Sn

++ be arbitrary. Now H(X)Z = X−1ZX−1 ∈ Sn
++ and

H(H(X)Z)U = (H(X)Z)−1U(H(X)Z)−1 = XZ−1XUXZ−1X = H(X)−1H(Z)H(X)−1U

for all U ∈ Sn
++ proves the second statement. For the third, we take X1/2 = X1/2,

the symmetric positive definite square root of X. The next statement then follows since
H(X)−1/2 = H(X1/2)

−1 = H(X−1/2). Finally, taking λi’s to be the eigenvalues of X proves
the last statement. �

Proposition 5. Suppose that

1. E is a Euclidean space with inner product 〈·, ·〉 and induced norm ‖·‖,
2. K is a self-dual, regular, open, convex cone in E,
3. f is a ϑ-logarithmically homogeneous, self-concordant barrier for K, and
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4. there exists E ∈ K such that the local inner product at E coincides with 〈·, ·〉.
Let g and H denote the gradient and Hessian of f , respectively. If f satisfies the properties
listed in Proposition 4 with Sn

++, n and I replaced by K, ϑ and E respectively, then for any
X, Z ∈ K and S ∈ K∗ = K,

H(H(X)1/2Z) = H(X)−1/2H(Z)H(X)−1/2 and ‖S‖−g(X) = ‖X‖−g(S).

Proof. Let X, Z ∈ K be arbitrary. It follows from (9) and (10) that

H(H(X)1/2Z) = H(H(X1/2)Z)

= H(X1/2)
−1H(Z)H(X1/2)

−1

= H(X)−1/2H(Z)H(X)−1/2.

Let S ∈ K∗ = K be arbitrary. Let W = H(S1/2)
−1X = H(−g(S1/2))X ∈ K∗ = K and

Z = H(S1/2)W1/2 ∈ K. Using (9), (10) and (11), we deduce that

H(Z)X = H(H(S1/2)W1/2)X

= H(S1/2)
−1H(W1/2)H(S1/2)

−1X

= H(S)−1/2H(H(S1/2)
−1X)1/2H(S1/2)

−1X

= H(S)−1/2E = S.

Therefore, using (6) and (9), we deduce that

‖S‖−g(X) = 〈H(−g(X))S, S〉
= 〈H(X)−1H(Z)X, H(Z)X〉
= 〈(H(Z)−1H(X)H(Z)−1)−1X, X〉
= 〈H(H(Z)X)−1X, X〉
= 〈H(S)−1X, X〉
= 〈H(−g(S))X, X〉
= ‖X‖−g(S).

�

Remark 1. The above proposition was first proved for symmetric cones by Nesterov and
Todd [13]. The matrix Z = H(S1/2)W1/2 in the proof is called a scaling-point in [13].

3.2. Description of Algorithm. In this subsection, we describe a primal-dual interior-
point algorithm for SDP.

Assume that both (SDP ) and (SDD) have strictly feasible solutions. This implies that
the sets of optimal solutions for the primal and dual problems are nonempty and bounded,
and the gap between the optimal primal and dual objective values is zero. We may assume
further that X̂ /∈ L and Ŝ /∈ L⊥, for if X̂ ∈ L, then the zero matrix is optimal for (SDP ),

and if Ŝ ∈ L⊥, then (SDP ) has constant value.
Henceforth in this section, g and H denote the gradient and Hessian of the standard

logarithmic barrier for Sn
++, respectively.

Fix some r ∈ (0, 1). Suppose we have a pair of strictly feasible primal-dual solutions
(X̃, S̃); i.e., X̃ and S̃ are positive definite and feasible for (SDP ) and (SDD) respectively. As

9



suggested at the end of Section 2.3, we may use the second-order cone K̂r(X̃) to approximate
K = Sn

++. Consider the following approximating simple SOCP problem and its dual:

(SOCP ) inf{〈Ŝ, X〉 : X ∈ L + X̂, X ∈ cl K̂r(X̃)},
and

(SOCD) inf{〈X̂, S〉 : S ∈ L⊥ + Ŝ, S ∈ cl Kr(−g(X̃))},
where

Kr(−g(X̃)) =
{

S ∈ Sn : 〈−g(X̃), S〉−g(X̃) >
√

n− r2‖S‖−g(X̃)

}
=
{

S ∈ Sn : 〈X̃, S〉 >
√

n− r2‖S‖−g(X̃)

}
,

and

K̂r(X̃) = (Kr(−g(X̃)))∗ = K√
n−r2(X̃) =

{
X ∈ Sn : 〈X̃, X〉X̃ > r‖X‖X̃

}
.

Since X̃ ∈ K ⊆ K̂r(X̃), (SOCP ) is strictly feasible. This implies that (SOCD) has an
optimal solution if and only if it is feasible. Clearly, (SOCD) is feasible if and only if there

exists S̄ ∈ L⊥ + Ŝ such that the pair (X̃, S̄) is in the set

Sr := {(X, S) ∈ K ×K : S ∈ cl Kr(−g(X))} .

Therefore if we assume, in addition, that (X̃, S̃) ∈ Sr, then (SOCD) has an optimal solution
˜̃S. Moreover, ˜̃S ∈ cl Kr(−g(X̃)) ⊂ K.

Suppose that we now use the second-order cone K̂r(
˜̃S) to approximate K. We would then

consider the following primal-dual pair of second-order cone approximating problems:

(SOCD∗) inf{〈X̂, S〉 : S ∈ L⊥ + Ŝ, S ∈ cl K̂r(
˜̃S)},

and

(SOCP ∗) inf{〈Ŝ, X〉 : X ∈ L + X̂, X ∈ cl Kr(−g( ˜̃S))}.
Since

(X̃, ˜̃S) ∈ Sr

=
{

(X, S) ∈ K ×K : 〈X, S〉 ≥
√

n− r2‖S‖−g(X)

}
=
{

(X, S) ∈ K ×K : 〈X, S〉 ≥
√

n− r2‖X‖−g(S)

}
= {(X,S) ∈ K ×K : X ∈ cl Kr(−g(S))} ,

the problem (SOCP ∗) is feasible, and hence (SOCP ∗) has an optimal solution ˜̃X. Clearly,

( ˜̃X, ˜̃S) ∈ Sr, so that we can repeat the process with ( ˜̃X, ˜̃S) in place of (X̃, S̃). We then
continue repeating this process until the duality gap between the strictly feasible primal-
dual solution pair is below a certain prescribed fraction of the initial duality gap.

This algorithm is called the primal-dual second-order cone approximations algorithm.
Clearly, all pairs of iterates generated lie in the neighborhood

N2(r) :=
{

(X,S) ∈ (K ∩ (L + X̂))× (K ∩ (L⊥ + Ŝ)) : (X, S) ∈ Sr

}
.
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Note that cl Kr(−g(X)) is the smallest closed cone containing the local ball of radius r at
−g(X). Thus S ∈ cl Kr(−g(X)) if and only if there exist τ ≥ 0 and W ∈ Sn such that
S = τW and ‖W +g(X)‖−g(X) ≤ r. Simplifying the last inequality using −g(X) = X−1 and
the definition of the local norm yields

S ∈ cl Kr(−g(X)) ⇐⇒ ∃τ ≥ 0, ‖S1/2XS1/2 − τI‖ ≤ τr,

where I is the identity matrix of appropriate size. Consequently

N2(r) =
{

(X, S) ∈ (L + X̂)× (L⊥ + Ŝ) : ‖S1/2XS1/2 − τI‖ ≤ τr for some τ ≥ 0
}

.

In the following subsections, we show that the algorithm is polynomial-time.

Primal-Dual Second-Order Cone Approximations Algorithm
Given strictly feasible primal-dual pair (X in, Sin) ∈ N2(r) and ε > 0.

(1) Set k = 0, X(0) = X in and S(0) = Sin.
(2) While 〈X(k), S(k)〉 > ε〈X in, Sin〉,

(a) Solve for the optimal solution S(k + 1) of

min{〈X̂, S〉 : S ∈ L⊥ + Ŝ, S ∈ cl Kr(−g(X(k)))}.
(b) Solve for the optimal solution X(k + 1) of

min{〈Ŝ, X〉 : X ∈ L + X̂, X ∈ cl Kr(−g(S(k + 1)))}.
(c) Set k = k + 1.

(3) Output (Xout, Sout) = (X(k), S(k)).

3.3. Optimization Over A Second-Order Cone. In this subsection, we discuss the issue
of solving the second-order programming subproblem

(SOCP ∗) min{〈Ŝ, X〉 : X ∈ L + X̂, X ∈ cl Kr(−g(S̃))}.

where X̂ /∈ L, Ŝ /∈ L⊥, and (X̃, S̃) ∈ N2(r) for some X̃. A similar problem, where Kr(−g(S̃))

is replaced by the second-order cone {x ∈ Rn : x1 >
√

x2
2 + · · ·+ x2

n}, is discussed in [1,
pp. 27-28].

Since (X̃, S̃) ∈ N2(r), the problem (SOCP ∗) has an optimal solution. By replacing
X ∈ cl Kr(−g(S̃)) with the equivalent pair of constraints

〈S̃, X〉2 ≥ (n− r2)‖H(S̃)−1/2X‖2 and 〈S̃, X〉 ≥ 0,

we deduce the following Fritz John necessary conditions:

µŜ − λ
(
〈S̃, Xopt〉S̃ − (n− r2)H(S̃)−1Xopt

)
− νS̃ ∈ L⊥,

Xopt − X̂ ∈ L, 〈S̃, Xopt〉2 − (n− r2)‖H(S̃)−1/2Xopt‖2 ≥ 0, 〈S̃, Xopt〉 ≥ 0,

λ
(
〈S̃, Xopt〉2 − (n− r2)‖H(S̃)−1/2Xopt‖2

)
= 0, ν〈S̃, Xopt〉 = 0,

µ, λ, ν ≥ 0, (µ, λ, ν) 6= (0, 0, 0).

Under the assumptions X̂ /∈ L, we know that Xopt 6= 0, and hence 〈S̃, Xopt〉 > 0 as
S̃ ∈ K. This further implies that ν = 0 from complementary slackness. Therefore λ > 0, for
otherwise µ > 0, and thus the first condition implies Ŝ ∈ L⊥, contradicting the assumption

11



Ŝ /∈ L⊥. By scaling λ to one, and noting that µS̃ − µŜ ∈ L⊥, we arrive at the following
conditions:

µS̃ −
(
〈S̃, Xopt〉S̃ − (n− r2)H(S̃)−1Xopt

)
∈ L⊥,(13a)

Xopt − X̂ ∈ L,(13b)

〈S̃, Xopt〉2 − (n− r2)‖H(S̃)−1/2Xopt‖2 = 0,(13c)

〈S̃, Xopt〉 > 0, and(13d)

µ ≥ 0.(13e)

The first two conditions are respectively equivalent to

(µ− 〈S̃, Xopt〉)H(S̃)−1/2S̃ + (n− r2)H(S̃)−1/2Xopt ∈ H(S̃)1/2L⊥ = (H(S̃)−1/2L)⊥,

and
H(S̃)−1/2Xopt −H(S̃)−1/2X̂ ∈ H(S̃)−1/2L,

Therefore,

H(S̃)−1/2Xopt −H(S̃)−1/2X̂ = −PrH(S̃)−1/2L(αH(S̃)−1/2S̃ + X̂)

= −α PrH(S̃)−1/2L H(S̃)−1/2S̃ − PrH(S̃)−1/2L X̂,

where α = (µ− 〈S̃, Xopt〉)/(n− r2).
Substituting the above expression into (13c) gives a quadratic equation in α. This qua-

dratic equation has two real roots, one of which gives the optimal solution Xopt. To determine
which root gives the optimal solution, we only need to check the feasibility of the solutions
given by the roots and pick the one with the lower objective value.

3.4. Analysis of Algorithm. Consider the rate of decrease of the duality gap at each
iteration, i.e.,

〈X(k), S(k)〉 − 〈X(k + 1), S(k + 1)〉
〈X(k), S(k)〉

.

We claim that the rate of decrease in each iteration is no less than cr/
√

n, where cr is a
positive constant depending on r.

Theorem 6. Suppose n > 2. Let (X(k), S(k)) be the k-th strictly feasible primal-dual pair
of iterates of the primal-dual second-order cone approximations algorithm. For all k ≥ 1,

〈X(k), S(k)〉 − 〈X(k + 1), S(k + 1)〉
〈X(k), S(k)〉

>
cr√
n

,

where

cr =
(1− r)2

16
min

{
r2,

8

23

}
> 0.

Proof. Fix a k ≥ 1. To simplify notation, let X̄ = X(k), S̄ = S(k), ¯̄X = X(k + 1) and
¯̄S = S(k + 1). Clearly,

〈X̄, S̄〉 ≥ 〈X̄, ¯̄S〉 ≥ 〈 ¯̄X, ¯̄S〉.
For each X ∈ Sn

++ and r ∈ (0, 1), let Qr(X) : Sn → Sn be defined by

Qr(X)U = 〈X, U〉X − (n− r2)H(X)−1U.
12



Consider the optimality conditions (13a), (13b), (13c) and (13e) at ¯̄S and ¯̄X:

µX̂ −Qr(X̄) ¯̄S ∈ L, ¯̄S − Ŝ ∈ L⊥, 〈 ¯̄S, Qr(X̄) ¯̄S〉 = 0, µ ≥ 0,

and

νŜ −Qr(
¯̄S) ¯̄X ∈ L⊥, ¯̄X − X̂ ∈ L, 〈 ¯̄X, Qr(

¯̄S) ¯̄X〉 = 0, ν ≥ 0.

It follows from these conditions, together with X̄ − X̂ ∈ L and S̄ − Ŝ ∈ L⊥, that

〈Qr(X̄) ¯̄S − µX̄, S̄ − ¯̄S〉 = 0,(14)

〈Qr(
¯̄S) ¯̄X − ν ¯̄S, X̄ − ¯̄X〉 = 0, and(15)

〈Qr(X̄) ¯̄S − µ ¯̄X, Qr(
¯̄S) ¯̄X − ν ¯̄S〉 = 0.(16)

These equations imply the following strict inequalities. We prove these inequalities at the
end of this subsection.

Claim 7. It holds

〈X̄, Qr(
¯̄S) ¯̄X〉 >

r2(1− r)2

16n
〈X̄, ¯̄S〉〈 ¯̄X, ¯̄S〉,(17)

〈S̄, Qr(X̄) ¯̄S〉 >
r2(1− r)2

16n
〈X̄, S̄〉〈X̄, ¯̄S〉, and(18)

−〈Qr(X̄) ¯̄S, Qr(
¯̄S) ¯̄X〉 <

2
√

2r2

n
〈X̄, ¯̄S〉2〈 ¯̄X, ¯̄S〉.(19)

We now consider two cases.

Case 1 : µ ≤ 〈X̄, ¯̄S〉√
n

. Using (14) and (18), we deduce

〈X̄, ¯̄S〉√
n

〈X̄, S̄ − ¯̄S〉 ≥ µ〈X̄, S̄ − ¯̄S〉 = 〈S̄, Qr(X̄) ¯̄S〉 >
r2(1− r)2

16n
〈X̄, S̄〉〈X̄, ¯̄S〉.

Rearranging the terms gives

r2(1− r)2

16
√

n
<
〈X̄, S̄〉 − 〈X̄, ¯̄S〉

〈X̄, S̄〉
<
〈X̄, S̄〉 − 〈 ¯̄X, ¯̄S〉

〈X̄, S̄〉
.

Case 2 : µ > 〈X̄, ¯̄S〉√
n

. In this case

−〈Qr(X̄) ¯̄S, Qr(
¯̄S) ¯̄X〉〈X̄ − ¯̄X, ¯̄S〉 = µν〈 ¯̄X, ¯̄S〉〈X̄ − ¯̄X, ¯̄S〉

= µ〈X̄, Qr(
¯̄S) ¯̄X〉〈 ¯̄X, ¯̄S〉

>
〈X̄, ¯̄S〉√

n

r2(1− r)2

16n
〈X̄, ¯̄S〉〈 ¯̄X, ¯̄S〉2,

where the equations follow from (16) and (15), respectively, and the inequality follows
from (17). Therefore, by (19), we have

〈X̄, ¯̄S〉 − 〈 ¯̄X, ¯̄S〉
〈 ¯̄X, ¯̄S〉

>
(1− r)2

32
√

2n
.
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Hence,

〈X̄, S̄〉 − 〈 ¯̄X, ¯̄S〉
〈X̄, S̄〉

≥ 1− 〈 ¯̄X, ¯̄S〉
〈X̄, ¯̄S〉

=
1

〈 ¯̄X, ¯̄S〉
〈X̄, ¯̄S〉−〈 ¯̄X, ¯̄S〉

+ 1

>
1

32
√

2n
(1−r)2

+ 1

=
(1− r)2

32
√

2n + (1− r)2

>
(1− r)2

46
√

n
.

Combining both cases, we conclude that

〈X̄, S̄〉 − 〈 ¯̄X, ¯̄S〉
〈X̄, S̄〉

>
cr√
n

,

where

cr = min

{
r2(1− r)2

16
,
(1− r)2

46

}
> 0.

�

Once we have a lower bound on the rate of decrease that is inversely proportional to some
polynomial in the dimension of the problem, we can invoke the following theorem to conclude
that the algorithm is polynomial.

Theorem 8. Let ε ∈ (0, 1), δ > 0 and ω > 0 be given. Suppose that a sequence of real
numbers {µk}∞k=1 satisfies

µk+1 ≤
(

1− δ

nω

)
µk

for all k = 1, 2, . . . . Then there exists an index K with

K = O(nω ln
1

ε
)

such that µK ≤ εµ1.

Proof. See [18] Theorem 3.2. �

Corollary 9. Fix r ∈ (0, 1). Given any semidefinite programming problem over symmetric
n-by-n matrices and a pair of strictly feasible primal-dual solutions (X in, Sin) ∈ N2(r),
the primal-dual second-order cone approximations algorithm requires at most O(

√
n ln 1

ε
)

iterations to produce a pair of strictly feasible primal-dual solutions (Xout, Sout) satisfying

〈Xout, Sout〉 ≤ ε〈X in, Sin〉.

Proof. Apply Theorem 8 with δ = cr, ω = 1
2

and µk = 〈X(k), S(k)〉, k = 1, 2, . . . . �

We conclude this section with a proof of Claim 7.
14



Proof of Claim 7. From the necessary optimality conditions (13c) at ¯̄S and ¯̄X, we deduce
that

〈X̄, ¯̄S〉√
n− r2

= ‖ ¯̄S‖−g(X̄) = ‖X̄‖−g( ¯̄S), and(20)

〈 ¯̄X, ¯̄S〉√
n− r2

= ‖ ¯̄X‖−g( ¯̄S) = ‖ ¯̄S‖−g( ¯̄X).(21)

Since 〈 ¯̄X, ¯̄S〉, µ and ν are nonnegative, we deduce from (16) that for U = H( ¯̄S)−1/2 ¯̄X,

V = H( ¯̄S)−1/2X̄ and D = 〈E, V 〉V − (n − r2)H(V )−1E, where E = I is the unique fixed
point of the duality map,

0 ≤ −〈Qr(X̄) ¯̄S, Qr(
¯̄S) ¯̄X〉

= −〈 ¯̄S, ¯̄X〉〈Qr(X̄) ¯̄S, ¯̄S〉+ (n− r2)〈Qr(X̄) ¯̄S, H( ¯̄S)−1 ¯̄X〉

= (n− r2)〈Qr(X̄) ¯̄S, H( ¯̄S)−1 ¯̄X〉

= (n− r2)[〈X̄, ¯̄S〉〈X̄, H( ¯̄S)−1 ¯̄X〉 − (n− r2)〈H(X̄)−1 ¯̄S, H( ¯̄S)−1 ¯̄X〉]

= (n− r2)〈X̄, H( ¯̄S)−1/2I〉〈H( ¯̄S)−1/2X̄, U〉

− (n− r2)2〈H( ¯̄S)−1/2H(X̄)−1H( ¯̄S)−1/2I, U〉

= (n− r2)〈I, V 〉〈V, U〉 − (n− r2)2〈(H( ¯̄S)1/2H(X̄)H( ¯̄S)1/2)−1I, U〉

= (n− r2)〈I, V 〉〈V, U〉 − (n− r2)2〈H(H( ¯̄S)−1/2X̄)−1I, U〉
= (n− r2)〈D, U〉.

By (12), there exist positive real constants λ1, . . . , λn such that for all positive integers p,

(22) 〈H(V )−p/2E, E〉 =
n∑

i=1

λp
i

Since ‖V ‖2 = 〈H( ¯̄S)−1X̄, X̄〉 = ‖X̄‖−g( ¯̄S) and 〈V, E〉 = 〈X̄, H( ¯̄S)−1/2E〉 = 〈X̄, ¯̄S〉, the

condition (20) is equivalent to 〈V, E〉 =
√

n− r2‖V ‖. Therefore,( n∑
i=1

λi

)2

= 〈H(V )−1/2E, E〉2

= 〈V, E〉2

= (n− r2)〈V, V 〉
= (n− r2)〈H(V )−1/2E, H(V )−1/2E〉
= (n− r2)〈H(V )−1E, E〉

= (n− r2)
n∑

i=1

λ2
i ;
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i.e., the constants λ1, . . . , λn satisfy the conditions for Lemmas 12 and 13 in the Appendix.
By Lemma 12,

〈D, V 〉 = 〈E, V 〉‖V ‖2 − (n− r2)〈H(V )−1E, V 〉

=
1

n− r2
〈E, V 〉3 − (n− r2)〈H(V )−3/2E, E〉

=
1

n− r2

( n∑
i=1

λi

)3

− (n− r2)

( n∑
i=1

λ3
i

)

≤ − r2(1− r)

n(n− r2)

( n∑
i=1

λi

)3

< 0

Thus, D is not the origin. Let H+ be the half-space {Z ∈ Sn : 〈D, Z〉 ≥ 0}. It follows from
(n− r2)〈D, U〉 ≥ 0 that U ∈ H+. By Lemmas 12 and 13

‖D‖2 = 〈E, V 〉2‖V ‖2 − 2(n− r2)〈E, V 〉〈V, H(V )−1E〉+ (n− r2)2‖H(V )−1E‖2

=
1

n− r2
〈E, V 〉4 − 2(n− r2)〈E, V 〉〈E, H(V )−3/2E〉+ (n− r2)2〈E, H(V )−2E〉

=
1

n− r2

( n∑
i=1

λi

)4

− 2(n− r2)

( n∑
i=1

λi

)( n∑
i=1

λ3
i

)
+ (n− r2)2

( n∑
i=1

λ4
i

)

≤ 1

n− r2

( n∑
i=1

λi

)4

− 2

n− r2

(
1 +

r2(1− r)

n

)( n∑
i=1

λi

)4

+
1

n− r2

(
1 +

8r2

n

)( n∑
i=1

λi

)4

=
8r2

n(n− r2)

( n∑
i=1

λi

)4

− 2r2(1− r)

n(n− r2)

( n∑
i=1

λi

)4

<
8r2

n(n− r2)

( n∑
i=1

λi

)4

.(23)

Hence, the distance from V
‖V ‖ to the half-space H+ is

|〈D, V 〉|
‖D‖‖V ‖

=
−〈D, V 〉
‖D‖‖V ‖

>

r2(1−r)
n(n−r2)

(
∑n

i=1 λi)
3(√

8r2

n(n−r2)
(
∑n

i=1 λi)2
)(√

1
n−r2 (

∑n
i=1 λi)

) =
r(1− r)√

8n
.
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Since U
‖U‖ ∈ H+, it follows that the distance between U

‖U‖ and V
‖V ‖ is greater than r(1−r)√

8n
.

Therefore,

r2(1− r)2

8n
< ‖ V

‖V ‖
− U

‖U‖
‖2

= 2− 2
〈V, U〉
‖V ‖‖U‖

= 2− 2
(n− r2)〈V, U〉
〈E, V 〉〈E, U〉

= 2− 2
(n− r2)〈H( ¯̄S)−1X̄, ¯̄X〉

〈X̄, ¯̄S〉〈 ¯̄X, ¯̄S〉
,

which implies that

(24)
r2(1− r)2

16n
〈X̄, ¯̄S〉〈 ¯̄X, ¯̄S〉 < 〈X̄, ¯̄S〉〈 ¯̄X, ¯̄S〉 − (n− r2)〈H( ¯̄S)−1X̄, ¯̄X〉 = 〈X̄, Qr(

¯̄S) ¯̄X〉.

This proves (17). We can prove (18) in a similar way.
For (19), the left hand side is exactly (n− r2)〈D, U〉, which, by (23), satisfies

(n− r2)〈D, U〉 = (n− r2)

(
〈D, U − 〈U,E〉

n
E〉+ 〈〈E, V 〉V − (n− r2)H(V )−1E〉〈U,E〉

n
E

)
= (n− r2)

(
〈D, U − 〈U,E〉

n
E〉+

〈U,E〉
n

(〈E, V 〉2 − (n− r2)‖V ‖2)

)
≤ (n− r2)‖D‖‖U − 〈U,E〉

n
E‖

< (n− r2)

√
8r2√

n(n− r2)

( n∑
i=1

λi

)2
√
‖U‖2 − 2

〈U,E〉2
n

+
〈U,E〉2

n

=

√
8r2(n− r2)√

n
〈V, E〉2

√
〈 ¯̄X, ¯̄S〉2
n− r2

− 〈 ¯̄X, ¯̄S〉2
n

=
2
√

2r2

n
〈X̄, ¯̄S〉2〈 ¯̄X, ¯̄S〉

�

4. Extension To Symmetric Programming

At this point, we note that the development of the primal-dual second-order cone approxi-
mations algorithm and its analysis apply to any CCP problem over a self-dual, regular, open,
convex cone equipped with a logarithmically homogeneous, self-concordant barrier possessing
properties listed in Proposition 4. Although these properties are easily proven for standard
logarithmic barriers for positive definite cones, they are not specific to these barriers. Indeed,
the standard logarithmic barriers for symmetric cones also possess these properties. This
allows for the extension of the primal-dual second-order cone approximations algorithm to
symmetric cone programming.
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Symmetric cones are self-dual homogeneous cones. A regular, open, convex cone K in
an Euclidean space E with inner product 〈·, ·〉 is homogeneous if the group of linear auto-
morphisms of K acts transitively on it, i.e., for every x, y ∈ K, there exists a linear map
A ∈ L[E, E] such that AK = K and Ax = y. The cone K is symmetric if it is self-dual (i.e.,
K = K∗) and homogeneous.

The class of symmetric cones consists of the following five classes of cones, and their direct
sums; see [7].

(1) The class of second-order cones.
(2) The class of cones of symmetric, positive definite matrices.
(3) The class of cones of Hermitian, positive definite matrices.
(4) The class of cones of Hermitian, positive definite, quaternion matrices.
(5) An exceptional 27-dimensional cone.

Thus, symmetric cone programming includes LP, SDP and SOCP.
Symmetric cones can also be characterized as cones of squares of Euclidean Jordan alge-

bras. With this characterization, we define the standard logarithmic barriers for symmetric
cones and show that these barriers possess the properties listed in Proposition 4.

4.1. Symmetric Cones and Euclidean Jordan Algebras. In this subsection, we review
concepts in the theory of Euclidean Jordan algebras that are necessary for the purpose of
this section. Interested readers are referred to the second and third chapters of [7] for a more
comprehensive discussion on the theory of Euclidean Jordan algebras.

Every symmetric cone can be associated with a Euclidean Jordan algebra as follows (see
[7]): a cone is symmetric if and only if it is linearly isomorphic to the interior of the cone
of squares K(J) of a unique (up to isomorphism) Euclidean Jordan algebra (J, ◦). The cone
of squares of J can alternatively be described as the set of all elements with nonnegative
eigenvalues.

For each a ∈ J, let P (a) denote its quadratic representation 2L2(a) − L(a2), where L(a)
denotes the linear map b ∈ J 7→ a ◦ b. The next theorem lists several properties of P .

Theorem 10. Let (J, ◦) be an Euclidean Jordan algebra, and let e be its identity element.
The following are true.

1. For any a ∈ K(J), the quadratic representation P (a) of a is self-adjoint and positive
definite.

2. For invertible a ∈ J,
(25) P (a)K(J) = K(J).

3. For any a ∈ J,
(26) P (a)e = a2.

4. For any a ∈ K(J) and any rational t,

(27) P (at) = P (a)t.

5. For any a, b ∈ J,
(28) P (P (a)b) = P (a)P (b)P (a).

6. For any a, b ∈ J,
(29) tr P (a)b = tr a2 ◦ b.
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7. For any a, b ∈ J,
(30) det P (a)b = det a2 det b.

Proof. Let a, b ∈ J be arbitrary.

1. Since L(a) is self-adjoint for all a ∈ J, so is P (a). From [7], Theorems II.3.1
and III.2.2, we see that the set {P (a) : a ∈ K(J)} is the connected component of
the identity map in the set {P (a) : a ∈ J, P (a) invertible}. Thus, P (a) is positive
definite for any a ∈ K(J).

2. See [7], Theorem III.2.2.
3. By definition, P (a)e = 2L(a)2e− L(a2)e = 2a ◦ (a ◦ e)− (a ◦ a) ◦ e = a2.
4. From [9], Chapter IV, Theorem 1 and the paragraph following it, we have P (a)p =
P (ap) for any positive integer p. It then follows that for any positive integer p,

P (a) = P ((a1/p)p) = P (a1/p)p =⇒ P (a)1/p = P (a1/p).

for any a ∈ K(J). Consequently, for any a ∈ K(J) and any positive integers p and q,

P (ap/q) = P ((a1/q)p) = P (a1/q)p = P (a)p/q.

Finally, it follows from [7], Theorem II.3.1 that

P (a−p/q) = P ((ap/q)−1) = P (ap/q)−1 = P (a)−p/q.

5. See [7], Theorem II.3.2.
6. By definition, tr P (a)b = 2〈a, L(a)b〉 − tr a2 ◦ b = 2〈L(a)a, b〉 − tr a2 ◦ b = tr a2 ◦ b.
7. See [7], Theorem III.4.2.

�

4.2. Extending the Primal-Dual Second-Order Cone Approximations Algorithm.
Let K be a symmetric cone, and let J be a Euclidean Jordan algebra such that K = K(J).
The standard logarithmic barrier for K is the functional

f : K(J) → R : a 7→ − ln det(a).

Since J is unique up to isomorphism, the standard logarithmic barrier is well-defined. The
standard logarithmic barrier is a r-logarithmically homogeneous, self-concordant barrier for
K(J), where r = rk(J), the rank of J. Under the trace inner product (a, b) 7→ tr a ◦ b, the
gradient and Hessian of the standard logarithmic barrier are

g(a) = −a−1 and H(a) = P (a−1) = P (a)−1

(see [7], Theorems III.4.2 and II.3.3). Clearly, the local inner product at the identity element
e of J coincides with the trace inner product, and thus e is the unique fixed point of the
duality map a 7→ −g(a) = a−1.

In this subsection, we show that the standard logarithmic barrier of a symmetric cone
possesses the properties listed in Proposition 4. This means that the primal-dual second-
order cone approximations algorithm and its analysis apply to CCP problems over symmetric
cones with their standard logarithmic barriers.

Proposition 11. Let f be the standard logarithmic barrier for the symmetric cone K(J),
and let e be the identity element of J. The following are true.

1. The conjugate barrier of f differs from f by an additive constant.
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2. For any a, b ∈ K(J), H(a)b ∈ K(J) and H(H(a)b) = H(a)−1H(b)H(a)−1.
3. For any a ∈ K(J), there exists a1/2 ∈ K(J) such that H(a1/2) = H(a)1/2.

4. For any a ∈ K(J), H(a)−1/2e = a.
5. For any a ∈ K(J), there exist λ1, . . . , λn > 0 such that 〈H(a)−p/2e, e〉 =

∑r
i=1 λp

i

for any positive integer p.

Proof. Let a, b ∈ K(J) be arbitrary.

1. From (4), we see that f ∗(a) = f ∗(−g(a−1)) = −f(a−1) − r = ln det a−1 − r =
ln(det a)−1 − r = − ln det a− r = f(a)− r.

2. It follows from (25) that H(a)b = P (a−1)b ∈ P (a−1)K(J) = K(J). Using (28), we
deduce that

H(H(a)b) = P (P (a−1)b)−1 = (P (a−1)P (b)P (a−1))−1

= P (a−1)−1P (b)−1P (a−1)−1 = H(a)−1H(b)H(a)−1.

3. Let a1/2 = a1/2. Using (27), we deduce that H(a1/2) = P (a1/2)−1 = P (a)−1/2 =

H(a)1/2.
4. Using (26) and (27), we deduce that H(a)−1/2e = P (a)1/2e = P (a1/2)e = (a1/2)2 =
a.

5. For i = 1, . . . , n, let λi = λi(a) > 0, the eigenvalues of a. It follows from (26) and
(27) that

〈H(a)−p/2e, e〉 = 〈P (a)p/2e, e〉 = 〈P (ap/2)e, e〉 = 〈ap, e〉

= tr ap =
r∑

i=1

λi(a)p =
r∑

i=1

λp
i

for any positive integer p.

�

5. Comparison with the Primal-Dual Cone Affine Scaling Algorithm

In 1999, Berkelaar, Sturm and Zhang [5] developed the primal-dual cone affine scaling
(CAS) algorithm for SDP that combines the primal and dual problems, and uses Nesterov-
Todd scaling points to scale the combined primal-dual problem before approximating the
resulting problem with a standard second-order cone (i.e., a second-order cone centered
along I, the identity matrix). In this section, we compare the primal-dual CAS algorithm
with our algorithm.

The first difference is the generality of the concepts behind the algorithms. The primal-dual
CAS algorithm is motivated as an extension of primal CAS algorithms to the primal-dual
setting. Since the primal-dual CAS algorithm uses the Nesterov-Todd scaling points, which
are not known to be well-defined beyond symmetric cone programming, it is reasonable to
expect that the primal-dual CAS algorithm can at most be extended to symmetric cone pro-
gramming. On the other hand, we motivate the concept of second-order cone approximations
as a tool for CCP in general, not just for SDP (or symmetric cone programming). Although
there are some difficulties in extending our algorithm beyond symmetric cone programming,
the generality of our principle concept makes such extensions plausible.
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The second difference is in the algorithms themselves. They differ in a fundamental way.
Our algorithm strictly alternates between the primal problem and the dual problem. The
primal-dual CAS algorithm, like most primal-dual algorithms, instead works in the setting
of a combined primal-dual space.

Besides this fundamental difference, the algorithms use different types and sizes of neigh-
borhoods. Our algorithm uses the standard primal-dual neighborhood based on the Frobe-
nius norm, whereas the primal-dual CAS algorithm uses a variant of the standard neighbor-
hood which was shown by Sturm and Zhang [16] to properly contain the standard neigh-
borhood of the same radius. Thus, it seems that our algorithm uses a smaller neighborhood
than the primal-dual CAS algorithm. However, a careful analysis shows that while our al-
gorithm allows the neighborhood radius to be arbitrarily close to 1, the primal-dual CAS
algorithm produces pairs of iterates that stay in a neighborhood of radius no more than
1/
√

2. (This is due to the fact that in the combined primal-dual setting, the underlying
cone is the direct product of Sn

++ with itself, which implies that the underlying barrier has
complexity parameter twice that of the original barrier.)

Despite these differences, the two algorithms are very similar when applied in the same
context. Specifically, suppose that we combine the primal and dual problems into the self-
dual SDP problem

(SDPD) inf{〈Ŝ, X〉+ 〈X̂, S〉 : X ∈ L + X̂, S ∈ L⊥ + Ŝ, (X,S) ∈ (cl Sn
++)× (cl Sn

++)},
and apply our algorithm to (SDPD). Since (SDPD) is self-dual, the primal-dual alternation
vanishes. Moreover, we are now in the setting of the primal-dual CAS algorithm.

In the primal-dual CAS algorithm, (SDPD) is scaled by the pair of matrices (W (X, S),
W (S, X)), where W (X, S) denotes the Nesterov-Todd scaling matrix from X to S, before
using a standard second-order cone to locally approximate Sn

++. Our algorithm, when applied
to (SDPD), can be viewed similarly. Instead of scaling with the pair (W (X, S), W (S, X)),
our algorithms uses the pair (S, X) to scale and then uses a standard second-order cone to
locally approximate Sn

++. Thus, from this perspective, our algorithm, when applied in the
setting of combined primal-dual space, differs from the primal-dual CAS algorithm only in
the choice of scaling matrices.
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Appendix A. Technical Lemmas

Lemma 12. If λ1, . . . , λm > 0 (m > 1) satisfies (
∑m

i=1 λi)
2 = (m − r2)

∑m
i=1 λ2

i for some
r ∈ (0, 1), then

(m− r2)2

m∑
i=1

λ3
i ≥

(
1 +

r2(1− r)

m

)( m∑
i=1

λi

)3

.

Proof. Let D := {λ ∈ Rm :
∑m

i=1 λi = 1, (
∑m

i=1 λi)
2 = (m− r2)

∑m
i=1 λ2

i }, which is a closed,
bounded subset of the positive orthant Rm

++ as it is the intersection of the closed ball of
radius r/(m − r2) centered at [1/(m − r2), . . . , 1/(m − r2)]T with the affine subspace of
vectors whose coordinates sum to one. Due to the positive homogeneity of the inequality, it
suffices to show that

(m− r2)2 min

{
m∑

i=1

λ3
i : λ ∈ D

}
≥ 1 +

r2(1− r)

m
.

If m = 2, then we necessarily have (λ1, λ2) = ((1 + r/
√

2− r2)/2, (1 − r/
√

2− r2)/2).
Consequently, (2− r2)2(λ3

1 + λ3
2) = 1 + (r2− r4)/2 > 1 + r2(1− r)/2. Henceforth, we assume

that m > 2.
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Consider the real polynomial p : x 7→ xm +
∑m−1

i=0 aix
i of degree m with roots λ1, . . . , λm.

Now

am−1 = −
m∑

i=1

λ1 = −1

am−2 =
∑

1≤i<j≤m

λiλj =
(
(

m∑
i=1

λi)
2 −

m∑
i=1

λ2
i

)
/2

=
m− r2 − 1

2(m− r2)

am−3 = −
∑

1≤i<j<k≤m

λiλjλk = −

2
m∑

i=1

λ3
i − 3

(
m∑

i=1

λ2
i

)(
m∑

i=1

λi

)
+

(
m∑

i=1

λ

)3
 /6

= −

(
2

m∑
i=1

λ3
i −

3

m− r2
+ 1

)
/6

Since p has m positive real roots, its (m− 3)-rd derivative

p(m−3)(x) =[m(m− 1) · · · 4]x3 − [(m− 1)(m− 2) · · · 3]x2

+
(m− r2 − 1)(m− 2)(m− 3) · · · 3

m− r2
x

− [(m− 3)(m− 4) · · · 2]
2
∑m

i=1 λ3
i − 3

m−r2 + 1

6

must have three positive real roots, i.e., the cubic polynomial

(m− r2)p(m−3)

(m− 3)(m− 4) · · · 4
: x 7→m(m− r2)(m− 1)(m− 2)x3 − 3(m− r2)(m− 1)(m− 2)x2

+ 3(m− r2 − 1)(m− 2)x− (m− r2)(2
m∑

i=1

λ3
i −

3

m− r2
+ 1)

has three positive real roots. The two stationary points of the cubic polynomial are α :=(
1 ± r/

√
(m− 1)(m− r2)

)
/m. Thus, the value of the polynomial must be nonpositive at

α =
(
1 + r/

√
(m− 1)(m− r2)

)
/m. Hence,

(31)

2(m− r2)
m∑

i=1

λ3
i ≥ m(m− r2)(m− 1)(m− 2)α3 − 3(m− r2)(m− 1)(m− 2)α2

+ 3(m− r2 − 1)(m− 2)α− (m− r2)(1− 3

m− r2
)

Since α is a root of

x 7→ 3m(m− r2)(m− 1)(m− 2)x2 − 6(m− r2)(m− 1)(m− 2)x + 3(m− r2 − 1)(m− 2)

= (m− 2)
[
3m(m− r2)(m− 1)x2 − 6(m− r2)(m− 1)x + 3(m− r2 − 1)

]
,
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we have

α2 = − (m− r2 − 1)

m(m− r2)(m− 1)
+

2

m
α(32)

=⇒ α3 = − (m− r2 − 1)

m(m− r2)(m− 1)
α +

2

m
α2

= − (m− r2 − 1)

m(m− r2)(m− 1)
α− 2(m− r2 − 1)

m2(m− r2)(m− 1)
+

4

m2
α

= − 2(m− r2 − 1)

m2(m− r2)(m− 1)
+

3m2 − 3mr2 − 3m + 4r2

m2(m− r2)(m− 1)
α.(33)

From (31),

(m− r2)2

m∑
i=1

λ3
i

≥(m− r2)

2

m(m− r2)(m− 1)(m− 2)α3 − 3(m− r2)(m− 1)(m− 2)α2

+3(m− r2 − 1)(m− 2)α− (m− r2)

(
1− 3

m− r2

) 
=

(m− r2)

2

(
2(1 + r2)

m
+ 2

(
2r2

m
− r2

)
α

)

where we have used (32) and (33) in the equality. Finally, substituting for α gives

(m− r2)2

m∑
i=1

λ3
i ≥ (m− r2)

(
1

m
+

2r2

m2
− r3(m− 2)

m2
√

(m− 1)(m− r2)

)

= 1− r2

m
+

2r2

m
− 2r4

m2
− r3(m− 2)

√
m− r2

m2
√

m− 1

> 1 +
r2(1− r)

m
,

where the strict inequality follows from

2r +
(m− 2)

√
m− r2

√
m− 1

≤ 1 + r2 +
(m− 2)(m− r2)

(m− 1)
=

m2 −m− (1− r2)

m− 1
< m.

�

Lemma 13. If λ1, . . . , λm > 0 (m > 1) satisfies (
∑m

i=1 λi)
2 = (m − r2)

∑m
i=1 λ2

i for some
r ∈ (0, 1), then

(m− r2)3

m∑
i=1

λ4
i ≤

(
1 +

8r2

m

)( m∑
i=1

λi

)4

.

Proof. Let D := {λ ∈ Rm :
∑m

i=1 λi = 1, (
∑m

i=1 λi)
2 = (m− r2)

∑m
i=1 λ2

i }, which is a closed,
bounded subset of the positive orthant Rm

++ (see proof of preceding lemma). Due to the
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positive homogeneity of the inequality, it suffices to show that

(m− r2)3 max

{
m∑

i=1

λ4
i : λ ∈ D

}
≤
(

1 +
8r2

m

)
.

Since D is compact and
∑m

i=1 λ4
i is continuous over D, the above maximum is attained. Let

λ̃ = (λ̃1, . . . , λ̃m) ∈ Rm
++ be the maximum. Then, λ̃ satisfies the following Karush-Kuhn-

Tucker optimality conditions:

4λ3
j − µ− ν

(
2

m∑
i=1

λi − 2(m− r2)λj

)
= 0, j = 1, . . . ,m

m∑
i=1

λi = 1 and

( m∑
i=1

λi

)2

= (m− r2)
m∑

i=1

λ2
i .

If we take the weighted sum of the first m conditions with weights λ̃i, we get

4
m∑

i=1

λ̃4
i − µ

m∑
i=1

λ̃i − 2ν

(( m∑
i=1

λ̃i

)2

− (m− r2)
m∑

i=1

λ̃2
i

)
= 0,

which implies that µ = 4
∑m

i=1 λ̃4
i under the last two conditions. Summing up the first m

conditions gives

4
m∑

i=1

λ̃3
i −mµ− 2νr2

m∑
i=1

λ̃i = 0,

which implies that 2ν = 1
r2 (4

∑m
i=1 λ̃3

i −mµ). Therefore,

2ν + µ =
4
∑m

i=1 λ̃3
i −mµ

r2
+ µ

=
4
∑m

i=1 λ̃3
i − (m− r2)µ

r2

=
4

r2

[ m∑
i=1

λ̃3
i − (m− r2)

m∑
i=1

λ̃4
i

]
.

Now, ( m∑
i=1

λ̃3
i

)2

≤
( m∑

i=1

λ̃4
i

)( m∑
i=1

λ̃2
i

)

= (m− r2)

( m∑
i=1

λ̃4
i

)( m∑
i=1

λ̃2
i

)2

≤ (m− r2)

( m∑
i=1

λ̃4
i

)( m∑
i=1

λ̃3
i

)( m∑
i=1

λ̃i

)

=⇒
m∑

i=1

λ̃3
i ≤ (m− r2)

( m∑
i=1

λ̃4
i

)
,

where the first two inequalities follow from the Cauchy-Schwartz inequality. Thus, 2ν+µ ≤ 0.
Consequently, at least one root of the cubic polynomial t 7→ 4t3 − µ − ν(2 − 2(m − r2)t)
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is nonpositive. It follows that the components of λ̃, which are positive roots of this cubic
polynomial, can only take the values of the other two roots.

Suppose that p components of λ̃ take the value of α and m− p components take the value
of β, with α > β > 0. Since r > 0, we deduce from the last Karush-Kuhn-Tucker condition
that 0 < p < m. The condition

∑m
i=1 λ̃i = 1 is equivalent to pα + (m− p)β = 1, and( m∑

i=1

λ̃i

)2

= (m− r2)

( m∑
i=1

λ̃2
i

)
⇐⇒ 1 = (m− r2)(pα2 + (m− p)β2).

Together with pα+(m− p)β = 1, we deduce that mp(m− r2)α2− 2p(m− r2)α+ p− r2 = 0.

Solving for α gives two possible values, namely, 1
m
± r

√
m−p

m
√

p(m−r2)
. If α < 1

m
, then it follows

from pα + (m− p)β = 1 that β > 1
m

> α, a contradiction with our assumption. Hence

(34) α =
1

m
+

r
√

m− p

m
√

p(m− r2)
.

From mp(m− r2)α2 − 2p(m− r2)α + p− r2 = 0, we deduce that

(35) α2 =
2

m
α− p− r2

mp(m− r2)
,

and

α4 =
4

m2
α2 − 4(p− r2)

m2p(m− r2)
α +

(p− r2)2

m2p2(m− r2)2

=
8

m3
α− 4(p− r2)

m3p(m− r2)
− 4(p− r2)

m2p(m− r2)
α +

(p− r2)2

m2p2(m− r2)2

=
4(mp− 2pr2 + mr2)

m3p(m− r2)
α− (p− r2)(3mp− 4pr2 + mr2)

m3p2(m− r2)2
(36)

Thus, from 1 = (m− r2)(pα2 + (m− p)β2), we have

(m− r2)3

m∑
i=1

λ4
i

=(m− r2)3

(
pα4 +

(1− (m− r2)pα2)2

(m− p)(m− r2)2

)
=

m− r2

m− p
(m(m− r2)2pα4 − 2(m− r2)pα2 + 1)

=
m− r2

m− p

(
4(m− r2)(m− 2p)r2

m2
α +

m2p−mp2 + 4p2r2 − 4pr4 + mr4

m2p

)
,

where we have used (35) and (36) for the third equality. Substituting (34) gives

(m− r2)3

m∑
i=1

λ4
i =

m− r2

m

(
1 +

4r2

m
− 8r4

m2
+

r4

(m− p)p
+

4(m− 2p)r3
√

(m− r2)

m2
√

p(m− p)

)
.
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Since the last two terms are maximized when p = 1, we have

(m− r2)3

m∑
i=1

λ4
i ≤

m− r2

m

(
1 +

4r2

m
− 8r4

m2
+

r4

m− 1
+

4(m− 2)r3
√

(m− r2)

m2
√

m− 1

)
= 1 +

3r2

m
− 12r4

m2
+

8r6

m3
+

r4(m− r2)

m(m− 1)
+

4r3(m− r2)(m− 2)
√

m− r2

m3
√

m− 1

< 1 +
3r2

m
− 12r4

m2
+

8r6

m3
+

r4

m

(
1 +

2

m

)
+

4r3

m

= 1 +
3r2 + r4 + 4r3

m
− 8r4

m2
+

8r6

m3

< 1 +
8r2

m
− 8r4

m2
+

8r4

m3
≤ 1 +

8r2

m
.
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