<table>
<thead>
<tr>
<th>Title</th>
<th>Sampling moiré as a special windowed Fourier ridges algorithm in demodulation of carrier fringe patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kemao, Qian; Agarwal, Nimisha; Ri, Shien; Wang, Qinghua</td>
</tr>
<tr>
<td>Citation</td>
<td>Kemao, Q., Agarwal, N., Ri, S., & Wang, Q. (2018). Sampling moiré as a special windowed Fourier ridges algorithm in demodulation of carrier fringe patterns. Optical Engineering, 57(10), 100503-. doi:10.1117/1.OE.57.10.100503</td>
</tr>
<tr>
<td>Date</td>
<td>2018</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/47394</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2018 Society of Photo-optical Instrumentation Engineers (SPIE). All rights reserved. This paper was published in Optical Engineering and is made available with permission of Society of Photo-optical Instrumentation Engineers (SPIE).</td>
</tr>
</tbody>
</table>
Sampling moiré as a special windowed Fourier ridges algorithm in demodulation of carrier fringe patterns

Qian Kemao
Nimisha Agarwal
Shien Ri
Qinghua Wang
Sampling moiré as a special windowed Fourier ridges algorithm in demodulation of carrier fringe patterns

Qian Kemao,* Nimisha Agarwal,a Shien Ri,b and Qinghua Wang
Nanyang Technological University, School of Computer Science and Engineering, Singapore National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Abstract. In recent times, both the windowed Fourier ridges (WFR) and sampling moiré (SM) algorithms have been extensively used due to their high effectiveness in the demodulation of carrier fringe patterns. As they are developed independently, they are mostly recognized as completely different techniques, but we theoretically prove that SM is a special WFR with a specific window shape and a preset local frequency. This unifies the two different algorithms and enhances the understanding of their theoretical aspects, which helps to simplify the selection of these algorithms in real applications.© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)

Keywords: phase retrieval; fringe pattern analysis; windowed Fourier transform; sampling moiré.

Paper 181151L received Aug. 17, 2018; accepted for publication Oct. 3, 2018; published online Oct. 22, 2018.

2 Sampling Moiré Technique

To evaluate the fringe pattern shown in Eq. (1), SM preselects a sampling pitch T (an integer value) close to P. The carrier fringe pattern $f(x)$ is then downsampled every T-pixels into a total of T-step phase-shifted fringe patterns, and the intensity values of the pixels in between are interpolated from these downsampled pixels, resulting in the following moiré fringe pattern:

$$f_{m,t}(x) = \begin{cases} f(x), & \text{for } x = kT + t \\ \text{interpolated}, & \text{otherwise} \end{cases},$$

where the subscript m indicates “moiré,” the subscript $t = 0, 1, \ldots, T - 1$ is the index of these phase-shifted fringe patterns, and k is an integer running from 0 to floor$[(M - t - 1)/T]$. These moiré fringe patterns have the same size as the original carrier fringe pattern and can be written as

$$f_{m,t}(x) = a(x) + b(x) \cos[\varphi(x) + (\omega_g - \omega_c) x + \omega_c t],$$

where $\omega_g = 2\pi/T$ denotes the sampling frequency.

It is noted that (i) the global frequency ω_g is reduced by ω_c into $\omega_g - \omega_c$ due to the downsampling. Because T is close to P, the reduced global frequency is usually very small, the moiré fringe patterns with much wider fringe spacing are generated and can be interpolated with high accuracy; (ii) $\omega_c t$ is introduced due to different starting points of the downsampling and can be treated as a phase shift. Consequently, the phase of the moiré fringe patterns can be obtained using the T-step PS algorithm written in a complex number form as

$$\varphi(x) + (\omega_g - \omega_c) x = \sum_{t=0}^{T-1} f_{m,t}(x) \exp(-j2\pi t/T).$$
where \(j = \sqrt{-1} \) and \(\angle \) takes the argument (or angle) of a complex number. To recover the phase with the original global frequency, the complex field in the right of Eq. (4) is multiplied by \(\exp(j2\pi x/T) \), resulting in

\[
\varphi_{\text{SM}}(x) = \varphi(x) + \alpha_0 x
\]

\[
= \angle \sum_{i=0}^{T-1} \{ f_{m,i}(x) \exp[-j2\pi(t-x)/T] \}, \tag{5}
\]

which will be used as the formal representation of SM for further analysis.

3 Windowed Fourier Ridges Algorithm

WFR has been explained in detail in Refs. 4 and is outlined for the completeness of this letter. Given a fringe pattern \(f(x) \), its WFT is defined as

\[
Sf(u; \xi_s) = \int_{-\infty}^{\infty} f(x) g(x-u) \exp[-j2\pi \xi_s(x-u)] \, dx, \tag{6}
\]

where \(x \) and \(u \) are the spatial coordinates, \(\xi_s \) is the frequency coordinate, and \(g(x) \) is a window function. Based on the WFT spectrum, WFR first estimates the local frequency from the ridge of the spectrum as

\[
\hat{\omega}_s(u) = \arg \max_{\xi_s} |Sf(u; \xi_s)|, \tag{7}
\]

and subsequently estimates the phase as

\[
\hat{\varphi}(u) = \angle Sf[u; \hat{\omega}_s(u)], \tag{8}
\]

Substituting the above equation into Eq. (5) yields

\[
\varphi_{\text{SM}}(u) = \angle \left(\frac{1}{T} \sum_{t=0}^{T-1} \{ f(u + t - t_0) \cdot f(u + t + t_0) \cdot \exp[-j2\pi(t-u)/T] \} \right. \]

\[
\left. + \frac{1}{T} \sum_{t=0}^{T-1} \{ f(u + t - t_0) \cdot f(u + t + t_0) \cdot \exp[-j2\pi(t-u)/T] \} \right). \tag{12}
\]

Using a substitution \(x = u + t - t_0 \) for the first summation \(S_1 \) in Eq. (13), followed using the relationship \(\exp[-j2\pi(u + x)/T] = \exp[j2k\pi x]=1 \) due to Eq. (14), gives

\[
S_1 = \sum_{x=u-t_0}^{u-1} \{ f(u + x - t_0) \cdot f(x) \cdot \exp[-j2\pi(x-u)/T] \}. \tag{13}
\]

By doing the same manipulations for the other three summations, we have

\[
\varphi_{\text{SM}}(u) = \angle \left(\frac{1}{T} \sum_{x=u-t_0}^{x} \{ f(u + x - t_0) \cdot f(x) \cdot \exp[-j2\pi(x-u)/T] \} \right. \]

\[
\left. + \frac{1}{T} \sum_{x=u-T-t_0}^{x} \{ f(u + x - t_0) \cdot f(x) \cdot \exp[-j2\pi(x-u)/T] \} \right) \tag{14}
\]

The first and the third terms can now be combined, so do the second and fourth terms, resulting in

\[
\varphi_{\text{SM}}(u) = \angle \left(\frac{1}{T} \sum_{x=u-T-t_0}^{x} \{ f(u + x - t_0) \cdot f(x) \cdot \exp[-j2\pi(x-u)/T] \} \right. \]

\[
\left. + \frac{1}{T} \sum_{x=u-T-t_0}^{x} \{ f(u + x - t_0) \cdot f(x) \cdot \exp[-j2\pi(x-u)/T] \} \right). \tag{15}
\]

4 Sampling Moiré as a Special Windowed Fourier Ridges Algorithm

SM is based on downsampling, interpolation, and PS, whereas WFR is based on WFT. They look completely different. To explore their inherent relationship, we analyze SM in Eq. (3) by explicitly incorporating the intensity interpolation. For simplicity, first-order (i.e., linear) interpolation is examined first.

Let us consider a pixel at a general position,

\[
u = kT + t_0. \tag{10}\]

where \(k \) is an integer and \(0 \leq t_0 \leq T - 1 \). This pixel’s intensity is retained in \(f_{m,i}(x) \) during downsampling and thus does not require interpolation, i.e., \(f_{m,i}(u) = f(u) \). In other phase-shifted moiré fringe patterns \(t \neq t_0 \), all \(f_{m,i}(u) \) are generated by interpolation. Two downsampled pixels, one on the left and one on the right, should be carefully located and then used for the linear interpolation:

\[
f_{m,i}(u) = \begin{cases} \frac{1}{T} \{ (T + t - t_0) \cdot f(u + t - t_0) + (t + t_0) \cdot f(u + t + t_0) \} & \text{if } t < t_0, \\ \frac{1}{T} \{ (t + t_0) \cdot f(u + t - t_0) + (T - t + t_0) \cdot f(u + t + t_0) \} & \text{if } t \geq t_0. \end{cases} \tag{11}\]
It can finally be arranged into
\[
\varphi_{SM}(u) = \angle \sum_{x=u-T}^{u+T} \{ f(x)g(x-u) \exp[-j\omega_x \cdot (x-u)] \},
\]
with \(\omega_x = 2\pi/T \) being the angular frequency of downsampling and \(g(x-u) \) being a triangular window as
\[
g(x-u) = 1 - |x-u|/T,
\quad -T \leq x-u \leq T.
\]

Note that, when \(x = u+T \), we have \(g(x-u) = 0 \), indicating that this pixel has no contribution to the summation, which allows us to change the upper summation limit from \(u+T-1 \) to \(u+T \), as shown in Eq. \((16) \). Compared with WFR in Eq. \((9) \), it is now clear that SM (first order) is in the same form of WFR with a triangular window of half size \(W = T \) and a local frequency preset at \(\hat{\omega}_x = \omega_x \).

SM (third order) using cubic interpolation is also often used, where a third-order polynomial is generated using four downsampled pixels, two on the right and two on the left. By the same derivation as SM (first order), it can again be led to the form of Eq. \((16) \), but the window is slightly different: the window shape is smoother, and the window size is doubled. The windows for first- and third-order interpolations are shown in Fig. 1 with a Gaussian window shown for reference.

To verify this theoretically derived equivalence, we simulate a fringe pattern \((256 \times 256 \text{ pixels}) \) with a phase of \(k \) times the peaks phase generated using the MATLAB peaks function, together with a carrier of fringe pitch \(P \) = 8.1 pixels as an example. Additive noise is added with different noise levels (NLs) (the ratio of the noise standard deviation to the fringe amplitude in percentage). The sampling pitch is set at \(T = 8 \) pixels. To exclude border effects around image boundaries for both methods, the central \(200 \times 200 \) pixels are involved for computing the root-mean-square (RMS) phase error. The SM is implemented according to Ref. 9. The WFR has already been used since the early work13 and has very minor changes since then. We merely modify the WFR code by changing the Gaussian window to the windows corresponding to first- and third-order interpolations as shown in Fig. 1. We turn off the frequency scanning in WFR by setting both the lowest and highest frequencies to \(\omega_x \). The RMS phase errors obtained using SM and WFR for (i) \(k = 0\,0.5\,4 \), \(\text{NL} = 0 \) and (ii) \(k = 1 \), \(\text{NL} = 0\,0.2\,1 \) are shown in the left and right of Fig. 2, respectively. The form \(a = b : c : d \) means that the parameter \(a \) changes from \(b \) to \(d \) with an increment of \(c \). Although the principles and implementations of SM and WFR are completely different, their performances are observed to be identical in all these cases, verifying our theoretical analysis. The RMS phase error of SM (third order) is not significantly different from that of SM (first order), which can now be explained easily by their similar window shapes as shown in Fig. 1.

5 Discussion on Methodology Errors

The most obvious difference between SM and WFR is the local frequency determination. In WFR, the best local frequency is always scanned and searched using Eq. \((10) \) and then used for phase extraction in Eq. \((14) \). In SM, the sampling pitch is preset manually, which could be very different from the exact fringe pitch. No frequency scanning may sacrifice the phase accuracy dramatically, but it does not happen.

To quantitatively find it out, we resort to the theoretical WFR result where a Gaussian window with \(\sigma_x \) representing the window size is used. The windowed Fourier spectrum can be written as
\[
S_f(u; \hat{\omega}_x) = f(u) \left(\frac{4\pi\sigma_x^2}{1 + \sigma_x^2} \right)^{1/2} \exp \left[-\frac{\sigma_x^2(\hat{\omega}_x - \omega_x)^2}{2(1 + \sigma_x^2)} \right] \exp \left[-\frac{1}{2} \arctan(\sigma_x^2) \right],
\]
where we have considered \(f(u) = 0.5b(u) \exp[j\rho(u)] \) as the fundamental component of the carrier fringe pattern. From \(S_f(u; \hat{\omega}_x) \), the phase can be obtained as

Fig. 1 Windows corresponding to intensity interpolation for SM (first order/third order), and the Gaussian window for WFR, where \(T \) expresses the sampling pitch.

Fig. 2 Simulation results of SM (first order/third order) and WFR (with first-/third-order SM windows): (a) the phase complexity changes and (b) NL changes.
The first term in the right of the above equation is exactly what we desire, but the second and third terms appear as methodology errors. For convenience, they are labeled as the frequency mismatch and the curvature errors, respectively. In WFR, the frequency mismatch error is suppressed by finding \(\omega_0 \) that is closest to \(\omega_x \), while the curvature error is suppressed by estimating \(c_{xx} \) and then deducting it by \(\frac{1}{2} \arctan(\sigma_x^2 c_{xx}) \).

The following further examines these methodology errors: (i) when \(c_{xx} = 0 \), i.e., the phase is locally linear, thus both the frequency mismatch error and the curvature error disappear. In such a case, SM can be used with perfect accuracy, even with a rough and inaccurate estimation of the sampling pitch. Nevertheless, a good estimation of the local frequency \(\omega_x \) increases the amplitude of \(S_f(u; \omega_x) \) and consequently increases the robustness of phase extraction from noisy fringe patterns. (ii) When \(c_{xx} \neq 0 \), we consider the following typical values: a phase curvature of \(c_{xx} = 0.01 \) rad/(pixel)\(^2 \), a frequency mismatch error of \(\omega_x - \omega_0 \neq 0.2 \) rad/pixel, and a window size of \(\sigma_x = 5 \) pixels. The corresponding frequency mismatch and curvature errors are both around 0.12 rad (i.e., 2% of \(\frac{\pi}{2} \)). These errors are seen to be quite small, although their significance depends on specific applications. Overall, this analysis explains why SM still has high accuracy even without frequency scanning. Nevertheless, SM should be used with caution, and indeed, incorporating scanning into SM is being considered by the authors.

6 Conclusions

In this letter, SM is theoretically proved to be a special WFR algorithm when set with specific windows and without frequency scanning, thus leading to two seemingly completely different techniques to be linked up and unified. This helps us to enhance the understanding of the algorithms, simplifies the technique selection for real applications, and enables further insights for developing even better fringe analysis techniques.

References