<table>
<thead>
<tr>
<th>Title</th>
<th>High transmission gain inverted-F antenna on low-resistivity Si for wireless interconnect(Published)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhang, Yue Ping; Guo, L. H.; Sun, Mei</td>
</tr>
<tr>
<td>Date</td>
<td>2006</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/5994</td>
</tr>
<tr>
<td>Rights</td>
<td>IEEE Electron Device Letters © 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. http://www.ieee.org/portal/site.</td>
</tr>
</tbody>
</table>
High Transmission Gain Inverted-F Antenna on Low-Resistivity Si for Wireless Interconnect

Y. P. Zhang, L. H. Guo, and M. Sun

Abstract—Inverted-F antennas of 2-mm axial length are designed and fabricated on a low-resistivity silicon substrate (10 Ω · cm) using a post back-end-of-line process. For the first time, their performances are measured up to 110 GHz for wireless interconnects. Results show that a sharp resonance can be seen at 61 GHz for the antenna, and a high transmission gain of −46.3 dB at 61 GHz is achieved from the pair of inverted-F antennas at a separation of 10 mm on a standard 10 Ω · cm silicon wafer of 750-μm thickness.

Index Terms—Integrated antennas, interchip and intrachip radios, wireless chip area networks.

I. INTRODUCTION

MOS TECHNOLOGY continuously scales down feature size to improve the speed of operation. At the time of writing, the minimum feature size of MOS transistors has reduced to 90 nm and the speed of operation has exceeded 100 GHz. Such rapid scaling has two profound impacts. First, it enables a much higher degree of integration. Second, it implies much greater challenge of interconnecting because metal wire width and space are greatly reduced and fundamental material limits are approaching. To surpass these fundamental material limits, a wireless interconnect has been proposed. Floyd et al. have demonstrated wireless clock distribution at 15 GHz in 0.18-μm CMOS technology [1]. Zhang has evaluated wireless data transmission at 15 GHz and proposed the concept of wireless chip area networks based on ultrawideband (UWB) radio technology [2]. These studies show that wireless interconnects rely on the transmission gains of integrated antennas. To characterize integrated antennas, Kim et al. fabricated dipoles of 2-mm axial length on 10 and 20 Ω · cm silicon substrates and measured their transmission gains from 10 to 18 GHz. They found that the transmission gains of dipoles increase with frequency and are higher on the 20 Ω · cm silicon substrate than those on the 10 Ω · cm silicon substrate [3]. To improve integrated antennas, Rashid et al. fabricated dipoles of 2-mm axial length on proton-implanted silicon substrates and measured their transmission gains from 6 to 26.5 GHz. They demonstrated that proton implantation greatly increased the resistivity of silicon substrates and the transmission gains. They confirmed that the transmission gains of dipoles increase with frequency and found that the transmission gains could be maximized for a given resistivity by optimizing the silicon substrate thickness [4]. In this paper, we demonstrate high transmission gain integrated inverted-F antennas for wireless interconnect. Inverted-F antennas of 2-mm axial length were fabricated on low-resistivity silicon substrates (10 Ω · cm) with the post back-end-of-line (BEOL) process. We describe the design and fabrication of the inverted-F antenna in Section II. We analyze and discuss the measured performance of the inverted-F antenna up to 100 GHz in Section III. Finally, we summarize the conclusions in Section IV.

II. DESIGN AND FABRICATION OF INVERTED-F ANTENNA

The linear inverted-F antenna consists of a horizontal element, a short-circuited vertical element, and a signal-driven vertical element. One advantage of the inverted-F antenna is that its input impedance can be arranged to have an appropriate value to match the source impedance without using any additional circuit between the antenna and the source. Another advantage of the inverted-F antenna is its performance with both vertical and horizontal polarizations, because the antenna has both vertical and horizontal elements. The layout and top view of the on-chip inverted-F antenna are illustrated in Fig. 1. The test ground-signal-ground (GSG) pads are squares of 80 × 80 μm. The width of the line elements is 10 μm. Given the technology, the design parameters are L, H, and S. The effective length (L + H) controls the frequency of resonance, whereas the separation distance S can adjust the antenna impedance to match the source. The pitch of our available on-wafer test probes limits S to 100 μm. Most reported integrated antennas for wireless interconnect have 2-mm axial length. Hence, we chose our parameters L, S, and H as 2 mm, 100 μm, and 100 μm, respectively. Fig. 1 also shows the tested die view including transmit antenna 00 and receive antennas 01, 02, and 03.

One of the challenges for on-chip antennas is the large loss due to low-resistivity silicon substrate. It becomes more serious as the frequency increases to the millimeter-wave range. In order to overcome this problem, a proton-implantation process has been developed [4], [5]. It significantly increases the resistivity of the silicon substrate underneath the antenna radiating element from 10 to 10² Ω · cm. The use of a proton-implanted silicon substrate has deviated from mainstream silicon technology, which undoubtedly reduces the level of system integration.
and increases the cost of the total solution. In this paper, we employed the post-BEOL process developed at IME for RF CMOS passives to fabricate our antennas. The BEOL process is illustrated in Fig. 2. Note that a standard low-resistivity silicon wafer of 750-µm thickness is used. First, a 6-µm-thick SiO₂ layer is grown on the wafer to simulate the insulator used for on-chip interconnect in standard CMOS process, and over it a 750-nm-thin aluminum pattern is deposited, which is equivalent to the Al pad used in standard CMOS ICs. Then, a 20-µm-thick SiO₂ layer is grown to enhance the isolation of the RF passives from the silicon substrate of low resistivity. The 20-µm-thick SiO₂ layer and the associated deep via capability are two important features of this BEOL process. Next, a 100-nm-thin Si₃N₂ layer is grown. After this process, we proceed to grow a 4-µm-thick SiO₂ layer. In the 4-µm-thick SiO₂ layer, the copper passive pattern is embedded. Deep vias are formed to connect the aluminum with the copper layers. This is followed by sequentially growing a 300-nm-thin Si₃N₂ layer and a 300-nm-thin SiO₂ layer for passivation. The aluminum test pads are finally formed for testing. The inverted-F antenna was fabricated with the simplified post-BEOL process where no aluminum layer was deposited and no deep via was formed. The inverted-F antenna was separated from the silicon substrate by a 20-µm-thick SiO₂ layer.

III. RESULTS AND DISCUSSION

The inverted-F antennas were measured on a wafer using a MicroTech probe station and an HP8510XF network analyzer to get the S-parameters in the frequency range of 10–110 GHz. The wafer was mounted on the metal chuck of the probe station. Transmission gain (TG) is calculated from the S-parameters as [1]

$$TG = \frac{|S_{21}|^2}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}$$

where the symbols have their usual meaning. TG is defined as the antenna transmission gain when the receiving and transmitting antennas are perfectly matched. It is valid only for the case that $S_{11} \ll 1$.

Fig. 3 shows the measured S_{11} results of receive antennas 01, 02, and 03 in Fig. 1 located at three different dies. It is evident that their S_{11} results are insensitive to their location on the wafer. More importantly, it can be seen that a sharp resonance dip occurs at 61 GHz, which indicates the excellent matching of the inverted-F antenna to a 50-Ω source at this frequency. At 61 GHz, the wavelength in a CMOS silicon substrate of low resistivity in Fig. 2 is about 2.2 mm. The feature size of our inverted-F antenna is about 2.2 mm, which indicates that the origin of the 61-GHz resonant frequency comes from the one-wavelength resonance. Using a threshold of −10 dB, a broad 12.5-GHz bandwidth can be achieved at 61 GHz. It is interesting to mention that exploiting the 60-GHz band for wireless local area network applications has recently received considerable attention because at which a large bandwidth of 7 GHz
is available [6]. As the high-frequency capabilities of CMOS technology improve through scaling, CMOS has become a viable technology for 60-GHz operation [7]. In addition, Fig. 3 compares the measured and simulated S_{11} results of the transmit antenna 00 in Fig. 1. The simulation was run using a full-wave solver IE3D. It is seen that the measured and simulated locations of the resonance dips agree well. However, the measured and simulated S_{11} values do not agree well. It might be due to fabrication tolerance.

Fig. 3 shows that the measured S_{11} results are lower than -10 dB in the frequency range of 56–67 GHz, where (1) is valid to use. Fig. 4 shows the calculated transmission gain results in this frequency range between transmit antenna 00 and receive antennas 01, 02, and 03 of Fig. 1. A transmission gain of -46.3 dB at 61 GHz is achieved from the pair of inverted-F antennas at a separation of 10 mm on a standard 10 Ω·cm silicon substrate of 750-μm thickness. It should be mentioned that a transmission gain of -56 dB was measured for a pair of 2-mm-long and 10-μm-wide dipoles at a separation of 10 mm on a standard 10 Ω·cm silicon substrate of 500-μm thickness at 18 GHz [1]. This is very close to the -56.3-dB gain at 18 GHz obtained for the same-sized dipoles at the same separation on a standard 10 Ω·cm silicon substrate of 260-μm thickness [4]. From Fig. 4, it is interesting to note that the transmission gain decreases slowly with the separation distance between the transmit and receive antennas in the far-field region at 61 GHz. An approximate decreasing rate of 0.16 dB/mm reveals that the propagation of guided waves plays a dominant role. Fig. 4 also shows the measured phase delay between receive antennas 01 and 02 with respect to the transmit antenna. It is observed that the phase delay changes rapidly with frequency, which indicates that the signal in this frequency range suffers from the multipath fading due to the propagation of multiple guided modes or paths.

IV. Conclusion

We have designed and fabricated inverted-F antennas of 2-mm axial length on a low-resistivity silicon substrate (10 Ω·cm) using the BEOL process for wireless interconnects. For the first time, we measured their performance up to 110 GHz. Results show that a sharp resonance can be seen at 61 GHz for the antenna and a high transmission gain of -46.3 dB at 61 GHz is achieved from the pair of inverted-F antennas at a separation of 10 mm on a standard 10 Ω·cm silicon substrate of 750-μm thickness.

REFERENCES