<table>
<thead>
<tr>
<th>Title</th>
<th>Design and experiment on differentially-driven microstrip antennas (Published)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhang, Yue Ping</td>
</tr>
<tr>
<td>Citation</td>
<td>Zhang, Y. P. (2007). Design and experiment on differentially driven microstrip antennas. IEEE Transactions on Antennas and Propagation, 55(10), 2701-2708.</td>
</tr>
<tr>
<td>Date</td>
<td>2007</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/5997</td>
</tr>
<tr>
<td>Rights</td>
<td>IEEE Transactions on Antennas and Propagation © 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. http://www.ieee.org/portal/site.</td>
</tr>
</tbody>
</table>
Design and Experiment on Differentially-Driven Microstrip Antennas
Yue Ping Zhang

Abstract—Design and experiment is given of differentially-driven microstrip antennas. First, the design formulas
to determine the patch dimensions and the location of the feed point for single-ended microstrip antennas are examined to design
differentially-driven microstrip antennas. It is found that the
patch length can still be designed using the formulas for the
required resonant frequency but the patch width calculated by
the formula usually needs to be widen to ensure the excitation of the
fundamental mode using the probe feeds. The condition that
links the patch width, the locations of the probe feeds, and the
excitation of the fundamental mode is given. Second, the wideband
techniques for single-ended microstrip antennas are evaluated
for differentially-driven microstrip antennas. A novel H-slot is
proposed for differentially-driven microstrip antennas to improve
impedance bandwidth. Third, the effects of imperfect differential
signal conditions on the performance of differentially-driven
microstrip antennas are investigated for the first time. It is found
that they only degrade the polarization purity in the H-plane
with an increased radiation of cross-polarization. Finally, both
differentially-driven and single-ended microstrip antennas were
fabricated and measured. It is shown that the simulated and
measured results are in acceptable agreement. More importantly,
it is also shown that the differentially-driven microstrip antenna
has wider impedance bandwidth of measured 4.1% and simulated
3.9% and higher gain of measured 4.2 dBi and simulated 3.7
dBi as compared with those of measured 1.9% and simulated
1.3% and gain of measured 1.2 dBi and simulated 1.2 dBi of the
single-ended microstrip antenna.

Index Terms—Cavity model, input impedance, microstrip patch
antenna, radiation pattern.

I. INTRODUCTION

MICROSTRIP antennas have many unique and attractive
properties – low in profile, light in weight, compact and
conformable in structure, and easy to fabricate and to be inte-
grated with solid-state devices [1]. Therefore, they have been
widely used in radio systems for various applications. Radio
systems have been traditionally designed for single-ended
signal operation, so have been microstrip antennas. Recently,
radio systems have begun to be designed for differential signal
operation [2]. This is because the differential signal operation
is more suitable for high-level integration or single-chip solu-
tion of radio systems. Radio systems that adopt differential
signal operation require differential antennas to get rid of
bulky off-chip and lossy on-chip balun to improve the receiver
noise performance and transmitter power efficiency [3]. There
have been a few papers about differential microstrip antennas
[4]–[8]. They focus on either integration with solid-state circuits
or analysis of differential signal operation and indeed provide
little information on the design of differential microstrip an-
tennas. In this paper we present the design and experiment on
differentially-driven microstrip antennas. We examine the ap-
plicability of the design formula and the wideband techniques
of single-ended microstrip antennas for differentially-driven
microstrip antennas in Section II. We also evaluate the effects
of imperfect differential signal conditions on the performance
do microstrip antennas in this Section. We describe the experi-
ment and discuss the measured results to validate the designs in Section III. Finally, we summarize the
conclusions in Section IV.

II. DESIGN OF DIFFERENTIALLY-DRIVEN MICROSTRIP
ANTENNAS

A microstrip antenna and a coordinate system are illustrated in
Fig. 1. The microstrip antenna that has the patch width \(a\) along
\(x\)-axis and the patch length \(b\) along \(y\)-axis located on the surface
of a grounded dielectric substrate with thickness \(t\), dielectric
constant \(\varepsilon_r\), and dielectric loss tangent \(\delta\) is differentially driven
at points \((x_1, y_1)\) and \((x_2, y_2)\). The design of the differentially-
driven microstrip antenna is to determine the patch width \(a\) and
length \(b\) and the driving points \((x_1, y_1)\) and \((x_2, y_2)\) necessary
to satisfy the input impedance and radiation characteristics with
the given information on the substrate.

The input impedance \(Z_d\) of the differentially-driven micro-
strip antenna is given by [8]

\[
Z_d = 2(Z_{11} - Z_{21}) = 2(Z_{22} - Z_{12}) \tag{1}
\]

where the \(Z\) parameters are defined at the driving points \((x_1, y_1)\)
and \((x_2, y_2)\) and they can be easily calculated with the improved
cavity model [9]. Equation (1) reveals that there is a cancellation mechanism, which may improve the impedance bandwidth. The value of \(Z_d \) is required in the design of matching network between the differentially-driven microstrip antenna and the differential active circuitry in a radio system. The \(S_{11} \) calculated from \(Z_d \) is given by

\[
S_{11} = \frac{Z_d - Z_c}{Z_d + Z_c}
\]

(2)

where \(Z_c = 100 \Omega \).

The radiation of the differentially-driven microstrip antenna also originates from two slots and each slot can be thought of as radiating from the same field as a magnetic dipole with a magnetic current. The magnetic current is directly proportional to the \(z \) component of electric field in the cavity region, which can be written as in (3) at the bottom of the page, where \(\alpha \) and \(\theta \) represent the amplitude and phase imbalance at the two driving points, respectively, and all others have their usual meaning [8]. Ideally, \(\alpha = 0 \) and \(\theta = 0^\circ \), thus it can be seen from (3) that the differentially-driven microstrip antenna introduces the cancellation mechanism, which can be explored to suppress some higher-order modes to reduce the cross polarization radiation. Practically, \(\alpha \) can be up to 0.1 (1 dB) and \(\theta \) to 10\(^\circ\), the effects of such imperfect differentially-driven conditions on the performance of the differentially-driven microstrip antenna are not clear and worthwhile investigating.

A. Design Procedure

For a single-ended microstrip antenna, the patch width \(a \) and length \(b \) that support the operation at the required resonant frequency (or the free-space wavelength \(\lambda_0 \)) can be designed using the formulas given in [10] as

\[
a = \frac{\lambda_0}{2\sqrt{\varepsilon_r + 1}}
\]

(4)

\[
b = \frac{\lambda_0}{2\varepsilon_e - 2\Delta b}
\]

(5)

where

\[
\Delta b = 0.412\left(\varepsilon_e + 0.3\right)\left(\frac{\lambda_0}{\lambda_0} + 0.264\right)
\]

(6)

\[
\varepsilon_e = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2\sqrt{1 + 12\frac{\lambda_0}{\lambda_0}}}
\]

(7)

The location of the driving point at \((x_1, y_1)\) for matching to 50 \(\Omega \) can be determined as

\[
x_1 = \frac{a}{2}
\]

(8)

\[
y_1 = \frac{b}{\pi} \cos^{-1} \left(\frac{1}{3\varepsilon_e b} \frac{a}{\sqrt{5(\varepsilon_e - 1)}} \right)
\]

(9)

where \(0 \leq y_1 < b/2 \) [11].

While for a differentially-driven microstrip antenna, it is found that the patch length \(b \) can still be designed using formulas (4) to (9) for the required resonant frequency. However, the patch width \(a \) calculated by formula (4) usually needs to be widened to ensure the excitation of the fundamental mode \(TM_{01} \) using the probe feeds. It is known that the larger the patch width is, the higher the radiation efficiency is. The limiting factor for the patch width is the undesirable influence of higher-order modes. For the differentially-driven microstrip antenna, higher-order modes are significantly suppressed. Hence, the patch width for the differentially-driven microstrip antenna can be much larger than that of the single-ended counterpart. The appropriate patch width \(a \) for practical use can be determined together with the location of the driving point \((x_2, y_2)\) for the differentially-driven microstrip antenna. It is natural to locate the driving point \((x_2, y_2)\) at the mirror point of \((x_1, y_1)\) along the line \(x = a/2 \) within the patch. The condition for the excitation of the fundamental mode \(TM_{01} \) using the probe feeds depends on the ratio of the separation to the free-space wavelength, which is given in [8] as

\[
\frac{\xi}{\lambda_0} = \frac{y_2 - y_1}{\lambda_0} \geq 0.1
\]

(10)

for an electrically thin substrate of low permittivity. Thus, the patch width for the differentially-driven microstrip antenna can be determined by widening the width calculated from formula (4) to that at which the condition (10) is satisfied.

Design formulas (4) to (10) on the FR4 substrate with \(t = 1.6 \) mm, \(\varepsilon_r = 4.4 \), and \(\delta = 0.025 \) at 2 GHz yields \(a = 74.4 \) mm, \(b = 35 \) mm, \((x_1, y_1) = (a/2, 9.654 \) mm), and \((x_2, y_2) = (a/2, 25.346 \) mm) for the differentially-driven microstrip antenna. The condition \(\xi/\lambda_0 = 15.692/150 \geq 0.105 > 0.1 \) is satisfied. Simulations using the HFSS were made for the microstrip antennas with a square substrate and ground plane of size \(\lambda_0 \times \lambda_0 \). Fig. 2 shows the simulated input impedances of the microstrip antennas driven at \((x_1, y_1)\) and \((x_2, y_2)\) for differential signal operation and driven at \((x_1, y_1)\) for single-ended signal operation as well. The impedance characteristics give insight on how an antenna must be modified to achieve a specified resonant frequency. Here, the resonant frequency is defined as where the reactance of the input impedance is equal to zero. According to this definition, one can see that the simulated resonant frequencies are at 1.93 GHz for the differentially-driven microstrip antenna and at 1.91 GHz for the single-ended microstrip antenna. The errors in predicting resonant frequencies between the calculations and simulations are 3.5% and 4.5% for the differentially-driven and single-ended microstrip antennas, respectively. The higher resonant frequency of the differentially-driven microstrip antenna could be due to the reactive cancellation between the inductance and capacitance introduced by the two feeds. Fig. 3 shows the

\[
E_z = j\mu_0 \sum_{m,n=0}^{\infty} \phi_{mn} (x_3, y_3) j_0 \left(\frac{m\pi d_e}{2\alpha_e} \right) I \left[\phi_{mn} (x_3, y_3) - (1 - \alpha) \phi_{mn} (x_3, y_3) \cos \theta \right]
\]

(3)
the differentially-driven and single-ended microstrip antennas. The S_{11} indicates how well the antenna is matched to a signal source and how wide the impedance bandwidth is. The impedance bandwidth is the difference between the upper and lower frequencies for which the S_{11} is less than or equal to -10 dB or VSWR less than or equal to 2. The percentage bandwidth is defined here as the difference between the upper and lower frequencies for which the S_{11} is less than or equal to -9.5 dB divided by the average of the upper and lower frequencies. The simulated impedance bandwidths are 50 MHz ($50/1925 = 2.6\%$) and 35 MHz ($35/1925 = 1.8\%$) for the differentially-driven and single-ended microstrip antennas, respectively. It is found that the simulated impedance bandwidth 1.8% for the single-ended microstrip antenna is quite close to 1.5% calculated from the simple empirical formula given by

$$B = \frac{3.77\varepsilon_{r}}{\varepsilon_{r} - 1} \frac{a}{b} \frac{t}{\lambda_{0}}$$ \hspace{1cm} (11)$$

where $t \ll \lambda_{0}$ [11]. An effort has also been made to improve the matching for the single-ended microstrip antenna by moving the driving point. It is shown in Fig. 3 as the case of single-ended 2 the matching is improved and so is the impedance bandwidth ($40/1912 = 2.00\%$) when the driving point is located at $(x_1, y_1) = (a/2, 15.654 \text{ mm})$. The wider impedance bandwidth of the differentially-driven microstrip antenna (2.6%) than that of the single-ended microstrip antenna (1.8% or 2.09%) is the result of reactive cancellation between the capacitance and inductance introduced by the two probe feeds of the differentially-driven microstrip antenna. Fig. 4 shows the simulated radiation patterns of the microstrip antenna driven for differential and single-ended signal operations at their respective resonant frequencies. As expected, the radiation of cross-polarization is weaker than that of the single-ended microstrip antenna. In addition, the simulations show that the gain of the differentially-driven microstrip antenna is 3.72 dBi, which is much higher than that of the single-ended microstrip antenna.

Simulations using the HFSS were also made for the differentially-driven microstrip antenna with a square substrate and ground plane of size $\lambda_{0}/2 \times \lambda_{0}/2$ to investigate the influences of the ground plane on the resonant frequency, impedance bandwidth, and radiation pattern of the differentially-driven microstrip antenna. The simulated results show...
that the size reduction of the ground plane from one- to half-wavelength increases the resonant frequency to 1.958 GHz from 1.93 GHz, reduces the impedance bandwidth to 47 MHz (47/1931 = 2.4%) from 50 MHz (30/1925 = 2.6%), and greatly enhances the radiation of cross-polarization.

B. Wideband Techniques

Single-ended microstrip antennas have narrow impedance bandwidth, so do differentially-driven microstrip antennas. Some useful wideband techniques have been devised for single-ended microstrip antennas in addition to the common methods of increasing substrate thickness and decreasing substrate permittivity [10]. These include using impedance matching, optimized patch geometry, multiple resonances, etc. We will see that the direct application of these techniques to differentially-driven microstrip antennas will have some problems. For example, the impedance-matching approach will significantly increase the size of a differentially-driven microstrip antenna because the matching networks are needed at both feeds. The technique of the optimized patch geometry using the generic algorithm will result in a very irregular and unconventional patch shape that is difficult to fabricate and to maintain the structural symmetry for the efficient radiation of differential signal. The multiple-resonance technique relies on adding parasitic patches, cutting slots, etc. Parasitic patches can be added in either planar or stacked configurations. Adding parasitic patches in planar configuration must maintain the structural symmetry for the efficient radiation of differential signal; as a result, it is very likely that the differentially-driven microstrip antenna appears much bulkier than its single-ended-driven counterpart. While adding a parasitic patch in stacked configuration increases the thickness of the differentially-driven microstrip antenna but can naturally maintain the structural symmetry for the efficient radiation of differential signal and also can keep the differentially-driven microstrip antenna as compact as its single-ended-driven counterpart. Hence, the multiple-resonance technique by a stacked parasitic patch is more appropriate than that by planar parasitic patches to a differentially-driven microstrip antenna for the impedance bandwidth enhancement.

Slots can be cut in the patch or the ground plane to improve impedance bandwidth and to reduce antenna size. A U-slot in the patch greatly improves the impedance bandwidth of a single-ended microstrip antenna [12]. Design rules for the U-slot single-ended microstrip antennas were derived in [13], which states that there is a lower limit on the substrate thickness below which wideband operation is unlikely. Considering that the dual feeds are required for a differentially-driven microstrip antenna, a novel H-slot is proposed, which is shown in Fig. 5.

As an example, a single-layer H-slot differentially-driven microstrip antenna is designed on the substrate with \(t = 6,35 \text{ mm} \), \(\varepsilon_r = 2.2 \). The substrate thickness and permittivity of the H-slot differentially-driven microstrip antenna are selected and satisfied the rule of thumb for the U-slot single-ended microstrip antenna at 2.15 GHz [13]. The design yields the patch dimensions \(a = 74 \text{ mm} \) and \(b = 42 \text{ mm} \) and the locations of feed points \((x_1, y_1) = (a/2, 12 \text{ mm})\) and \((x_2, y_2) = (a/2, 30 \text{ mm})\) for the H-shaped slot differentially-driven microstrip antenna. The horizontal slot is 1 mm wide and 16 mm long cut with its middle point at \(x = a/2 \) and \(y = b/2 \). Both vertical slots are 3 mm wide and 34 mm long. The left vertical slot is cut with its middle point at \(x = 66.5 \text{ mm} \) and \(y = b/2 \) and the right vertical slot is cut with its middle point at \(x = 83.5 \text{ mm} \) and \(y = b/2 \), respectively.

Fig. 6 shows the simulated input impedance of the H-slot differentially-driven microstrip antenna. It is noted that the multiple resonances occur at 1.95, 2.35, and 2.58 GHz, respectively. It should be mentioned that no resonance occurs if there is no H-slot. Fig. 7 shows the simulated \(S_{11} \) of the H-slot differentially-driven microstrip antenna. The simulated impedance bandwidth is 360 MHz (360/2260 = 16%). The reason for
the broadband characteristics of the H-slot differentially-driven microstrip antenna is the same as the U-slot for the single-ended microstrip antenna. It is the result of reactive cancellation between the capacitive H-slot and the inductive probe feed and/or the currents around the H-slot [12]. Fig. 8 shows the simulated radiation patterns of the H-slot differentially-driven microstrip antenna. The radiation of cross-polarization is still much weaker than the radiation of co-polarization in both E- and H-planes. The simulated gain of the H-slot differentially-driven microstrip antenna is 7.5 dBi.

C. Effects of Imperfect Differential Signal Conditions

It is difficult to generate an ideal differential signal. Practically, the differential signal has an amplitude imbalance and a phase difference. The amplitude imbalance can be up to 1 dB and the phase difference up to 10°, respectively. The effects of such imperfect differential signal conditions on the performance of the differentially-driven microstrip antenna are simulated. Figs. 9–11 show the simulated results. As compared with the perfect differential signal condition, the imperfect differential signal conditions do not affect the input impedance, which is expected as the input impedance is independent of the signal source. However, they degrade the polarization purity in the H-plane. The degradation by the phase imbalance 10° is more severe than that by the amplitude imbalance 1 dB. The degradation of polarization purity in the H-plane can be understood from (3). The imperfect differential signal conditions decrease the cancellation extent. The higher-order modes, in particular, the TM$_{20}$ mode can not be sufficiently suppressed; consequently, the polarization purity in the H-plane is degraded. In addition, the imperfect differential signal conditions do not alter the radiation mechanism of the microstrip antenna, the shapes of radiation patterns, especially in the E-plane, are therefore not changed.

III. EXPERIMENT ON DIFFERENTIALLY-DRIVEN MICROSTRIP ANTENNAS

Both differentially-driven and single-ended microstrip antennas were constructed on the FR4 substrate for operating at 2 GHz. They had the same patch dimensions with nominal values $a = 74.4$ mm and $b = 35$ mm on the ground plane of size 150 mm \times 150 mm. The driving points were located at $(x_1, y_1) = (a/2, 965.4$ mm), and
Fig. 11. Radiation patterns of the differentially-driven microstrip antenna: (a) in the H-plane and (b) in the E-plane for \((\alpha = 1 \, \text{dB} \text{ and } \theta = 0^\circ), (\alpha = 0 \, \text{dB and } \theta = 10^\circ), (\alpha = 1 \, \text{dB} \text{ and } \theta = 10^\circ)\), respectively.

\((x_2,y_2) = (a/2,25346 \, \text{mm})\) for the differentially-driven microstrip antenna and at \((x_1,y_1) = (a/2,9654 \, \text{mm})\) for the single-ended microstrip antenna. An Agilent network analyzer E5062A was used to measure the \(S_{11}\), an HP 8510C network analyzer the radiation patterns, and an Agilent signal generator 8048D and an HP spectrum analyzer 8595E the gain in an NTU anechoic chamber. Due to the lack of facilities to truly measure a differentially-driven antenna, the differentially-driven antenna is conventionally measured by using a balun that forces opposite currents in each feed of the antenna. One balun was used for the pattern and two for the gain measurements. The baluns were ZAPDJ-2 from Mini-Circuits. Fig. 12 shows the photo of the differentially-driven microstrip antenna connected with the balun and the single-ended microstrip antenna as well.

Fig. 13 shows the measured \(S_{11}\) of the balun.

Fig. 14. Measured amplitude imbalance and phase difference of the balun.

The post simulations were made, which considered the fabrication tolerance and the measured balun performance.

Fig. 15 shows the simulated and measured \(S_{11}\) values of both differentially-driven and single-ended microstrip antennas. It is seen that the differentially-driven microstrip antenna has wider impedance bandwidth of measured 81.5 MHz (4.1%) and simulated 77.6 MHz (3.9%) than those of measured 37.8 MHz (1.9%) and simulated 25.8 MHz (1.3%) of the single-ended microstrip antenna. The agreement between the calculated and measured results is in general acceptable. The discrepancy is likely due to soldering and warpage and the experimental error of our measuring system.

Fig. 16 shows the simulated and measured radiation patterns of both differentially-driven and single-ended microstrip antennas at 2 GHz. It is observed that a good agreement is obtained.
between the simulation and experiment. It is more interesting to note that the differentially-driven microstrip antenna has much better polarization purity than that of single-ended counterpart. This is particularly remarkable in the H-plane.

The peak gain was measured with the approach of two identical antennas. The measured peak gain values at 2 GHz are 4.2 and 1.2 dBi for the differentially-driven and single-ended microstrip antennas, respectively. They are quite close to the simulated peak gain values 3.7 dBi for the differentially-driven microstrip antenna and 1.2 dBi for the single-ended microstrip antenna. It is interesting to note that the peak gain values are low, which is mainly due to the large loss tangent associated with the FR4 substrates used [14], where a single-ended microstrip antenna designed on the same FR4 substrate as we used has the measured gain of 2.3 dBi at 1.873 GHz. It is more important to note that the peak gain of the differentially-driven microstrip antenna is 3 dB (exactly from the measurements and approximately from the simulations) higher than that of the single-ended microstrip antenna. This is because what we measured were the gain values of the linearly-polarized microstrip antennas. The H-plane cross-polarization for the single-ended microstrip antenna is much higher than that of the differentially-driven microstrip antenna. Also, the differentially-driven microstrip antenna has lower matching loss than that of the single-ended microstrip antenna. Furthermore, the differentially-driven microstrip antenna has significantly suppressed the higher order TM_{20} mode; this improves the radiation efficiency of the differentially-driven microstrip antenna. Hence, the gain of the differentially-driven microstrip antenna is higher than that of the single-ended microstrip antenna.

Fig. 16. Simulated and measured radiation patterns at 2.0 GHz: (a) H-plane, (b) E-plane for the differentially-driven antenna, (c) H-plane, (d) E-plane for the single-ended microstrip antenna.
IV. CONCLUSION

This paper focused on the design and experiment on differentially-driven microstrip antennas. The design procedure for differentially-driven microstrip antennas was established for the first time. The computer-aided design formulas to determine the patch dimensions and the location of the feed point for single-ended microstrip antennas were examined for differentially-driven microstrip antennas. It was found that the patch length can still be designed using the formulas for the required resonant frequency but the patch width calculated by the formula usually needs to be wider to ensure the excitation of the fundamental mode using the probe feeds. The condition that links the patch width, the locations of the probe feeds, and the excitation of the fundamental mode was given. The wideband techniques for single-ended microstrip antennas were evaluated for differentially-driven microstrip antennas. A novel H-slot was proposed for a single-layer differentially-driven rectangular microstrip antenna to improve the impedance bandwidth. The effects of imperfect differential signal conditions on the performance of differentially-driven microstrip antennas were investigated. It was found that they only degrade the polarization purity in the H-plane with an enhanced radiation of cross-polarization. Both differentially-driven and single-ended microstrip antennas were fabricated and measured. It was shown that the simulated and measured results are in acceptable agreement. More importantly, it was also shown that the differentially-driven microstrip antenna has wider impedance bandwidth of measured 4.1% and simulated 3.9% and higher gain of measured 4.2 dBi and simulated 3.7 dBi as compared with those of measured 1.9% and simulated 1.3% and gain of measured 1.2 dBi and simulated 1.2 dBi of the single-ended microstrip antenna.

ACKNOWLEDGMENT

The author would like to thank Dr. M. Sun, Mr. E. K. Chua, and Mr. S. H. Wi for their invaluable assistance in this work.

REFERENCES

