<table>
<thead>
<tr>
<th>Title</th>
<th>Role of Sb on the growth and optical properties of 1.55 μm GaInN(Sb)As/GaNAs quantum well structures by molecular beam epitaxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sun, Handong; Calvez, Stephane; Dawson, M. D.; Gupta, J. A.; Sproule, G. I.; Wu, X.; Wasilewski, Z. R.</td>
</tr>
<tr>
<td>Citation</td>
<td>Sun, H. D., Calvez, S., Dawson, M. D., Gupta, J. A., Sproule, G. I., Wu, X. et al. (2005). Role of Sb on the growth and optical properties of 1.55 μm GaInN(Sb)As/GaNAs quantum well structures by molecular beam epitaxy. Applied Physics Letters, 87(18).</td>
</tr>
<tr>
<td>Date</td>
<td>2005</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6044</td>
</tr>
</tbody>
</table>
Role of Sb in the growth and optical properties of 1.55 μm GaInN(Sb)As/GaNAs quantum-well structures by molecular-beam epitaxy

H. D. Sun, a) S. Calvez, and M. D. Dawson
Institute of Photonics, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW, United Kingdom
J. A. Gupta, G. I. Sproule, X. Wu, and Z. R. Wasilewski
Institute for Microstructural Sciences, National Research Council of Canada, Montreal Road, Ottawa, ON K1A 0R6, Canada

(Received 17 June 2005; accepted 8 September 2005; published online 25 October 2005)

High-quality GaInN(Sb)As/GaNAs double quantum wells (QWs) which emit at 1.54 μm wavelength at room temperature with a narrow linewidth of ∼34 meV (12 meV at 5 K) were fabricated by molecular-beam epitaxy on GaAs substrates. Photoluminescence and photoluminescence excitation spectroscopy were used to study the electronic states and optical properties of these heterostructures. By characterizing samples grown using different fluxes of Sb, the role played by Sb in the growth process and optical properties was elucidated. At low Sb flux, Sb atoms act mainly as a surfactant which improves the microstructure of the QWs and enhances the photoluminescence intensity. With an increase of Sb flux, some of the Sb atoms may incorporate into GaInNAs to form a quinary compound. In the latter case, the incorporation of Sb could also enhance the N composition in the QWs, which may be responsible for the further reduction of the band gap. © 2005 American Institute of Physics. [DOI: 10.1063/1.2123383]
the PL peak (the peak wavelength at 300 K is as long as 1541 nm, very close to the desired 1.55 μm). The PL intensity of V260 decreases, and the emission linewidth increases, only slightly compared to sample V259. The optical quality of sample V260 is apparently better than V255 as far as the PL intensity and linewidth are concerned. The PL linewidth of V260 reduces from 34 meV at 300 K to 12 meV at 5 K, which represents the very high quality of the dilute nitride structures in this wavelength range.

Figure 2 plots the PL and PLE spectra of all three samples, where the typical absorption profiles characteristic of QWs can be seen. Apart from the absorption of the GaAs and GaNAs barriers, three transition features associated with the QWs can be observed, readily assigned to \(E_{1} - HH_{1} \), \(E_{1} - LH_{\text{barrier}} \), and \(E_{2} - HH_{2} \) transitions, respectively.\(^{14}\) The type II transition of \(E_{1} - LH_{\text{barrier}} \) is due to the higher energy level of light holes in the GaNAs barriers lifted by the tensile strain than that of the compressively strained QWs.\(^{14}\)

To gain insight into the effect of Sb on the electronic states, we compare the PLE spectra of these three samples by normalizing at the barrier transition region as shown in Fig. 3. It is interesting to examine the evolution of the PLE profile in the QW absorption region with increase in the Sb flux. For sample V255 in which no Sb is introduced, the PLE displays a very sharp edge at \(E_{1} - HH_{1} \) transition, which is typical of a type I QW. Normally, this transition edge is correlated with the quality of the QWs: the better the QW quality, the sharper the transition edge. As can be seen from the PL measurements shown in Fig. 1, the optical properties have been improved by the introduction of Sb, which suggest that as a surfactant, Sb atoms play a role of increasing the structural quality of the QWs. On the contrary, the PLE profiles seem to demonstrate an abnormal trend: the addition of Sb gives rise to an absorption tail at the lowest transition edge. We tentatively attribute the earlier-mentioned “anomaly” to the influence of Sb on the energy profile across the QWs. As is well known, as a surfactant, Sb atoms tend to segregate to the surface during the growth.\(^{12}\) It turns out that there is a very thin layer enriched with Sb at the interface of QW and barrier. This thin layer should have different energy gap from the quantum wells and therefore the resultant energy profile in the whole structure is actually modified. We propose this modified energy diagram as shown in the inset of Fig. 3 by taking into account that replacing the As with Sb mainly lifts the valence energy.\(^{17}\) Apparently, in this case, the conduction band has been barely changed. However, there exist bound states in the valence band localized at the interface. For the optical absorption revealed by the PLE spectrum, the transitions from these localized valence states to first extended electronic state \(E_{1} \) will lie at the lower energy side of quantized QW transition \(E_{1} - HH_{1} \), which can explain the absorption tail appearing in the PLE spectra of samples V259 and V260.

In order to further investigate the effect of Sb on the optical properties of GaInN(Sb)As/GaNAs QWs, we performed PL measurements as a function of excitation intensity. Figure 4 shows the dependence of the PL spectra on the excitation intensity for samples V255 and V260, respectively, measured at 5 K. It is noted that for an excitation-intensity-induced PL blueshift at low temperature is considered to be related to the filling of localized states induced by the fluctuation of N contents in the QW plane.\(^{18}\) and the amount of blueshift
should depend on the distribution of the localized states and the excitation range. The absence of blueshift in V255 actually implies that the localized states are distributed mainly close to edge of E_1-HH_1 and our highest excitation intensity is not strong enough to saturate these localized states. With the introduction of Sb, the surfactant effect should further improve the structural quality of the QWs and reduce the localization energy induced by the fluctuation of N distribution. Therefore the observed blueshift in V259 and V260 cannot be attributed to the saturation of localized states induced by N fluctuation in the QWs, but rather should be related to energy diagram modified by Sb at the surface layer, which is consistent with the absorption tail observed by PLE spectra.

Returning to Fig. 3, the QW absorption features of V255 and V259 are almost the same except for the tail below the E_1-HH_1 transition edge revealed in the spectrum of V259. This is in agreement with the room temperature PL observation and strongly indicates that Sb atoms have not been incorporated uniformly into the quantum wells but rather are left at the surface. However, in V260, both PL and PLE have been changed pronouncedly, which can be attributed to the incorporation of Sb into the lattice of GaInNAs. We notice that the energy difference in E_1-LH_{barrier} transition between V255 and V260 is ~13 meV, which means that E_1 energy level in V260 has been decreased by 13 meV compared with V255. Although the energy of E_1-HH_1 transition in V260 cannot be derived precisely from the low temperature PLE spectrum due to the absorption tail, we can estimate the energy difference of E_1-HH_1 transition between V255 and V260 from the room temperature PL peaks to be about 16 meV. Therefore the energy change of HH_1 in V260 is only 3 meV. In consideration that the effects of adding a small amount of N and Sb into the GaInNAs are mainly decreasing the conduction band and increasing the valence bands, respectively, we conclude that while the energy gap reduction in V260 is partly due to the incorporation of Sb into GaInNAs, the main reason should be attributed to the increased N content. Another evidence for the N incorporation comes from the absorption strength just above the E_1-HH_1 transition. As can be seen from Fig. 3, the absorption strength of V260 is apparently lower than V255, while V259 is the same as V255. It has been shown theoretically that the incorporation of N into the lattice of InGaAs will decrease the transition matrix element due to the strongly localized wave function induced by N atoms. Therefore Fig. 3 offers further evidence that more N atoms have been incorporated into V260.

In conclusion, the effect of employing Sb during the growth of GaInNAs/GaAs QWs on the optical properties has been investigated by detailed PL and PLE spectroscopy. Evidence shows that at low flux, Sb acts as a surfactant which improves the structural quality of the QW but remains on the surface of the QW. With the increase of Sb flux, some of the Sb atoms are incorporated into the lattice of GaInNAs to form a quinary compound. Moreover, the incorporated Sb atoms enhance the N content, which is responsible for the further reduction of the band gap. This complicated incorporation profile is consistent with our detailed analysis on structure and composition.

