<table>
<thead>
<tr>
<th>Title</th>
<th>A saddle point approach to the computation of harmonic maps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hu, Qiya; Tai, Xue Cheng; Winther, Ragnar</td>
</tr>
<tr>
<td>Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6048</td>
</tr>
</tbody>
</table>
A SADDLE POINT APPROACH TO THE COMPUTATION OF HARMONIC MAPS

QIYA HU†, XUE-CHENG TAI‡, AND RAGNAR WINTHER§

Abstract. In this paper we consider numerical approximations of a constraint minimization problem, where the object function is a quadratic Dirichlet functional for vector fields and the interior constraint is given by a convex function. The solutions of this problem are usually referred to as harmonic maps. The solution is characterized by a nonlinear saddle point problem, and the corresponding linearized problem is well-posed near strict local minima. The main contribution of the present paper is to establish a corresponding result for a proper finite element discretization in the case of two space dimensions. Iterative schemes of Newton type for the discrete nonlinear saddle point problems are investigated, and mesh independent preconditioners for the iterative methods are proposed.

Key words. harmonic maps, nonlinear constraints, saddle point problems, error estimates

AMS subject classifications. 35A40, 65C20, 65N30

DOI. 10.1137/060675575

1. Introduction. The solutions of many systems of linear partial differential equations can be characterized as minimizers of quadratic functionals over a set of linear constraints. Examples of such systems are the linear Stokes system for fluid flow, the Reissner–Mindlin plate model, and the so-called mixed formulation of second order elliptic equations. The discretizations of these systems lead to linear systems with a saddle point structure, and conditioning of the systems deteriorates as the mesh becomes finer. As a consequence, substantial research on preconditioned iterative methods for the corresponding discrete systems has taken place; cf., for example, [2, 3] or [18, Chapter 6]. The purpose of the present paper is to perform a corresponding analysis for a nonlinear problem. We will study a simple variant of the problem characterizing harmonic maps with respect to a compact manifold. In particular, we will focus on stability and error estimates for the discretization and on preconditioning of the linear saddle point systems arising in a Newton iteration. For a bounded Lipschitz domain \(\Omega \subset \mathbb{R}^d \), we shall consider the problem of finding local minima of a constrained minimization problem of the form

\[
\min_{v \in H_0^1(\Omega; \mathcal{M})} \mathcal{E}(v) = \frac{1}{2} \int_\Omega |\nabla v|^2 \, dx.
\]

Received by the editors November 21, 2006; accepted for publication (in revised form) December 8, 2008; published electronically March 25, 2009. The work was supported by the Norwegian Research Council, LSEC (Laboratory of Scientific and Engineering Computing) at the Chinese Academy of Sciences, the Key Project of the Natural Science Foundation of China G10531080, the National Basic Research Program of China 2005CB321702, and the Natural Science Foundation of China G10771178.

http://www.siam.org/journals/sinum/47-2/67557.html

†LSEC, Institute of Computational Mathematics and Scientific Engineering Computing, Chinese Academy of Sciences, Beijing 100080, China (hqy@lsec.cc.ac.cn).

‡Department of Mathematics, University of Bergen, Johannes Brunsgate 12, Bergen, 5008, Norway and Division of Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore (tai@mi.uib.no, xctai@ntu.edu.sg).

§Centre of Mathematics for Applications and Department of Informatics, University of Oslo, P.B. 1053, Blindern, Oslo, Norway (ragnar.winther@cma.uio.no).
Here $H^1_g(\Omega; \mathcal{M})$ is the set of vector fields with values in a smooth compact manifold \mathcal{M} in \mathbb{R}^d, with function values and first derivatives in $L^2(\Omega)$, and such that the elements v of $H^1_g(\Omega; \mathcal{M})$ satisfies $v|_{\partial \Omega} = g$ for fixed vector field g defined on the boundary $\partial \Omega$.

We will further assume that the target manifold \mathcal{M} is implicitly given in the form

$$\mathcal{M} = \{ v \in \mathbb{R}^d \mid F(v) = 0 \},$$

where the function $F : \mathbb{R}^d \to \mathbb{R}^k$ is a smooth function, and it will be assumed that the compatibility condition $F(g) = 0$ holds. More specific assumptions on F and the boundary data g will be given later. Problems of the form (1.1) arise, for example, in liquid crystal and superconductor simulations. The solutions of the problem (1.1) are frequently referred to as harmonic maps [7]. In the present paper we will restrict our study to the case $k = 1$, i.e., \mathcal{M} is of dimension $d - 1$. We will focus on a nonlinear saddle point approach to compute the solutions of the problem (1.1).

For a review of results on the continuous harmonic map problem, we refer to [7, 24, 29, 30]. The purpose of the present paper is to discuss a finite element method for approximating the constraint minimization problem (1.1). For the simplest case of (1.1), with interior constraint given by $|v| = 1$, several numerical approaches have been discussed; cf., for example, [1, 4, 5, 13, 14, 15, 16, 20, 21, 25, 26, 32]. Variants of the projection method are proposed and analyzed in [1, 5, 16]. However, the standard projection method applies only to the simplest model. Moreover, it was illustrated in [5] that the projection method converges only for very special regular and quasi-uniform triangulations for the discretized harmonic map problem. The relaxation method of [13, 21, 25] is using point relaxation with the constraint required at each grid point. Both convergence analysis and numerical experiments are supplied in [25]. An advantage with the relaxation method is that it is very easy to implement. However, disadvantages are that the relaxation parameter has to be chosen properly to obtain convergence and that the convergence of such fixed point iterations is slow. Another commonly used approach for harmonic map problems is to use penalization methods; cf. [4, 14, 15, 16, 20]. It is even often combined with the gradient decent method, which produces some time evolution equations; cf. [4, 11, 12, 14, 15, 16, 20]. The approach and analysis given in [4] even work for general p-harmonic problems, with p close to 1. The analysis of [14, 15] is also valid for problems coupling harmonic maps with Navier–Stokes equations.

The main contribution of the present paper is to discuss the use of a saddle point approach for the construction of numerical methods for the constraint minimization problem (1.1). We will show that the corresponding saddle point problem is stable near exact local minima. This is achieved by verifying the standard stability conditions for linear saddle point problems. This verification has the extra difficulty in that the coercivity condition will not hold, in general, but only on the kernel of the linearized constraint. Using the standard stability conditions for the corresponding discrete saddle point problem, we will construct finite element methods such that the corresponding discrete solutions admit an optimal error estimate in the energy norm. Due to some technical difficulties, caused by the use of inverse inequalities to handle some nonlinear terms, this analysis of the finite element discretization is restricted to two space dimensions, i.e., $d = 2$. In this case we also establish that any critical point of the functional \mathcal{E} with respect to $H^1_g(\Omega; \mathcal{M})$ is indeed a local minimum. Compared with other approaches [4, 11, 14, 15], our estimates do not depend on extra artificial parameters like a weight parameter for the penalty method or a step size for a gradient flow. We will also study Newton’s method for the discrete nonlinear saddle
point problem and propose a simple and efficient preconditioner for the linear systems arising during the iterations. Numerical tests will be given to show the efficiency of the proposed method.

The outline of the paper is as follows. In section 2, the notations and assumption will be specified. In section 3, the continuous problem is studied. The problem (1.1) is formally transformed to a saddle point problem, and stability results will be proved for the continuous model. In section 4 we first describe a finite element discretization for (1.1), and then the discrete stability conditions are established. Using these stability conditions, the existence, local uniqueness, and the error estimates are derived in section 5. Variants of Newton’s method are analyzed in section 6, while numerical experiments are presented in section 7.

2. Notation and preliminaries. Throughout this paper we will use \(c \) and \(C \) to denote generic positive constants, not necessarily the same at different occurrences. It is assumed that the constants are independent of the mesh size \(h \), which will be introduced later. For vectors \(\mathbf{v}, \mathbf{w} \in \mathbb{R}^d \), we use \(\mathbf{v} \cdot \mathbf{w} \) to denote the Euclidian inner product, while the notation \(\mathbf{A} : \mathbf{B} \) is used to denote the Frobenius inner product of two matrices \(\mathbf{A}, \mathbf{B} \in \mathbb{R}^{d \times d} \). The corresponding norms are given by \(|\mathbf{v}| \) and \(|\mathbf{A}| \), respectively. For a vector or matrix \(\mathbf{A} \), \(\mathbf{A}^\top \) is the transpose of \(\mathbf{A} \). In the special case of vectors \(\mathbf{v} = (v_1, v_2) \in \mathbb{R}^2 \) we will use \(\mathbf{v}^\top = (-v_2, v_1) \) to denote the corresponding vector obtained by a rotation of 90 degrees.

For \(m \geq 0 \), we will use \(H^m = H^m(\Omega) \) to denote the real valued \(L^2 \)-based Sobolev spaces on domain \(K \subset \mathbb{R}^d \), the corresponding norm by \(\| \cdot \|_{m,K} \), and \(| \cdot |_{m,K} \) is the seminorm involving only the \(m \)th order derivatives. The subspace \(H^m_0 \) is the closure of \(C_0^\infty(K) \), while \(H^{-m} \) is the dual of \(H^m_0 \) with respect to an extension of the \(L^2 \) inner product \(\langle \cdot, \cdot \rangle \). The corresponding \(L^\infty \)-based Sobolev spaces are denoted \(W^{m,\infty}(K) \), with associated norm \(\| \cdot \|_{m,\infty,K} \). For all the Sobolev norms, we will omit \(K \) in case \(K = \Omega \). In general, we will use boldface symbols for vector or matrix valued functions. The gradient operator with respect to the spatial variable \(\mathbf{x} = (x_1, x_2, \ldots, x_d) \) is denoted \(\nabla = (\partial / \partial x_1, \partial / \partial x_2, \ldots, \partial / \partial x_d)^\top \). Furthermore, the gradient of a vector valued function \(\mathbf{v} = (v_1, v_2, \ldots, v_d)^\top \), \(\nabla \mathbf{v} \), is the matrix valued function obtained by taking the gradient rowwise, i.e., \((\nabla \mathbf{v})_{ij} = \partial v_i / \partial x_j \).

In order to specify the properties of the constraint functional \(F : \mathbb{R}^d \to \mathbb{R} \), defining the constraint manifold \(\mathcal{M} \), we will use \(\mathbf{D}F \) to denote the gradient of \(F \), i.e., \(\mathbf{D}F(\mathbf{v}) = (\partial F/\partial v_1, \ldots, \partial F/\partial v_d)^\top \) and the corresponding Hessian by \(\mathbf{D}^2F(\mathbf{v}) = (\partial^2 F/\partial v_i \partial v_j)_{i,j=1}^d \). Throughout this paper we will assume that the constraint functional \(F \) satisfies the following:

(i) \(F \) is convex and smooth. Furthermore, there exist constants \(c_0 \) and \(c_1 \) such that

\[
(2.1) \quad c_0 |\mathbf{v}|^2 \leq \mathbf{D}^2F(\xi)\mathbf{v} \cdot \mathbf{v} \leq c_1 |\mathbf{v}|^2, \quad \xi, \mathbf{v} \in \mathbb{R}^d.
\]

(ii) \(F(0) < 0 \) and \(\mathbf{D}F(0) = 0 \).

(iii) There exists an \(\ell > 0 \) such that the matrix function \(\mathbf{D}^2F \) satisfies

\[
(2.2) \quad |\mathbf{D}^2F(\xi_1) - \mathbf{D}^2F(\xi_2)| \leq \ell |\xi_1 - \xi_2|, \quad \xi_1, \xi_2 \in \mathbb{R}^d.
\]

The analysis below will still hold if the assumptions (2.1) and (2.2) are only valid for all \(\xi, \xi_1, \xi_2 \) in a neighborhood of a continuous true solution.

For the boundary function \(\mathbf{g} \) of (1.1), we assume that it has been extended into the interior of \(\Omega \) such that \(\mathbf{g} \in \mathbf{H}^1(\Omega) \). Corresponding to \(\mathbf{g} \), we let

\[
\mathbf{H}^1_{\mathbf{g}}(\Omega) = \{ \mathbf{v} \in \mathbf{H}^1(\Omega) : \mathbf{v} = \mathbf{g} \text{ on } \partial \Omega \}.
\]
If \(v : \Omega \to \mathbb{R}^d \) is a smooth vector field, then it follows from the chain rule that
\[
\nabla F(v) = (\nabla v)^t \nabla F(v),
\]
where the product on the right-hand side is the ordinary matrix-vector product. Furthermore, we have
\[
\nabla D F(v) = D^2 F(v) \nabla v.
\]
From assumptions (i)–(ii) and the Taylor expansion we obtain the following estimate:
\[
2c^{-1}_1 |F(0)| \leq |v(x)|^2 \leq 2c^{-1}_0 |F(0)|, \quad x \in \Omega
\]
for any \(v \) satisfying \(F(v) \equiv 0 \) in \(\Omega \). Similarly, we derive
\[
|DF(v)| \geq c_0 |v|
\]
for any \(v \), and hence \(|DF(v(x))| > 0 \) if \(v(x) \in \mathcal{M} \).

Let us note that the interior constraint in (1.1), given by \(v(x) \in \mathcal{M} \), implies that a local minimum of (1.1) satisfies \(u \in H^1_g(\Omega) \cap L^\infty(\Omega) \). In fact, if we restrict the analysis to the case \(d = 2 \), with the manifold \(\mathcal{M} \) taken to be the unit circle \(S^1 \), and we assume that the boundary \(\partial \Omega \) and the boundary data \(g \) are sufficiently regular, then there is a unique smooth global minimizer of (1.1) under the condition that the degree of \(g \) is zero; cf. [7, Theorem 12] and [22]. However, this result is not true for more general harmonic map problems [30, 24].

We will first consider the characterization of critical points of the functional \(E \) over \(H^1_g(\Omega; \mathcal{M}) \). The outline below follows a standard Langrange multiplier approach to constrained optimization; cf., for example, [6] for the finite-dimensional case or [17, 19] in the infinite-dimensional case. A vector field \(u \in H^1_g(\Omega; \mathcal{M}) \) is such a critical point if it satisfies
\[
\langle \nabla u, \nabla v \rangle = 0
\]
for any \(v \) in the tangent space of \(H^1_g(\Omega; \mathcal{M}) \) at \(u \), i.e., for any \(v \in H^1_0(\Omega) \) such that \(DF(u) \cdot v \equiv 0 \). In the saddle point approach which we shall consider here we will view the critical points \(u \) as elements of the larger space \(H^1_g(\Omega) \). Assume that \(u \) has the extra regularity property that
\[
u \in H^1_g(\Omega) \cap W^{1,\infty}(\Omega).
\]
Then any such \(u \) is a critical point if and only if there is a \(\lambda \in L^2(\Omega) \) such that the pair \((u, \lambda) \) satisfies the first order conditions
\[
\langle \nabla u, \nabla v \rangle + \langle DF(u) \cdot v, \lambda \rangle = 0, \quad v \in H^1_0(\Omega),
\]
\[
\langle F(u), \mu \rangle = 0, \quad \mu \in H^{-1}(\Omega).
\]
To see this we assume that \(u \) is a critical point satisfying (2.8), and let \(z = DF(u)/|DF(u)| \). For any \(v \in H^1_0(\Omega) \), let \(v_\tau = v - (v \cdot z)z \). As a consequence \(DF(u) \cdot v_\tau = 0 \), and, by (2.7),
\[
0 = \langle \nabla u, \nabla v_\tau \rangle = \langle \nabla u, \nabla v \rangle - \langle \nabla u, \nabla (v \cdot z)z \rangle.
\]
From (2.3), the constraint implies that \((\nabla u)^t z = 0 \). Therefore, the final inner product above can be rewritten as
\[
\langle \nabla u, \nabla (v \cdot z)z \rangle = \langle \nabla u : \nabla z, v \cdot z \rangle.
\]
Hence, the system (2.9) holds with

\[\lambda = -\nabla u \cdot \nabla z / |DF(u)| = -\nabla u : \nabla DF(u) / |DF(u)|, \]

where the last identity again is a consequence of the constraint. Note that it follows from (2.8) that the multiplier \(\lambda \) is actually in \(L^\infty(\Omega) \).

The variational problem (2.9) is the Euler–Lagrangian equation for the constrained minimization problem (1.1), and the system is a weak formulation of the problem

\[-\Delta u + \lambda DF(u) = 0 \quad \text{in} \quad \Omega, \]
\[F(u) = 0 \quad \text{in} \quad \Omega. \]

In the simplest case when \(\mathcal{M} = S^{d-1} \), i.e., the unit disc in \(\mathbb{R}^d \), we have \(\lambda = -|\nabla u|^2 \) and

\[-\Delta u - |\nabla u|^2 u = 0 \quad \text{in} \quad \Omega \quad u = g \quad \text{on} \quad \partial \Omega. \]

In the present paper we will restrict our attention to the critical points \(u \) of \(\mathcal{E} \) over \(H^1_g(\Omega; \mathcal{M}) \) that are local minimizers. So assume that the pair \((u, \lambda)\) is a solution of (2.9), satisfying the regularity property (2.8), and let \(w = w(t) \) be a smooth curve in \(H^1_g(\Omega; \mathcal{M}) \), defined for \(t \) in a neighborhood of the origin such that \(w(0) = u \) and \(w'(0) = v \). Hence, since \(F(w(t)) \equiv 0 \), we must have \(DF(u) \cdot v = 0 \), and

\[DF(u) \cdot w''(0) = -D^2 F(u) v \cdot v. \]

Furthermore, if we define a real valued function \(\phi = \phi(t) \) by

\[\phi(t) = \mathcal{E}(w(t)) = \frac{1}{2} \langle \nabla w(t), \nabla w(t) \rangle, \]

then

\[\phi'(t) = \langle \nabla w(t), \nabla w'(t) \rangle \quad \text{and} \quad \phi''(t) = \langle \nabla w'(t), \nabla w'(t) \rangle + \langle \nabla w(t), \nabla w''(t) \rangle. \]

Hence, it follows from the system (2.9) that \(\phi'(0) = \langle \nabla u, \nabla v \rangle = 0 \), and if \(u \) corresponds to a local minimum of \(\mathcal{E} \) over \(H^1_g(\Omega; \mathcal{M}) \), then the second order condition

\[\phi''(0) = \langle \nabla v, \nabla v \rangle + \langle \nabla u, \nabla w''(0) \rangle \geq 0 \]

must hold. However, by using the system (2.9) and (2.12), we obtain that

\[\langle \nabla u, \nabla w''(0) \rangle = -\langle D F(u) \cdot \nabla w''(0), \lambda \rangle = \langle D^2 F(u) v, v, \lambda \rangle. \]

Therefore, the second order condition takes the form

\[\phi''(0) = \langle \nabla v, \nabla v \rangle + \langle D^2 F(u) v, v, \lambda \rangle \geq 0. \]

In fact, let us refer to a local minimum \(u \) of \(\mathcal{E} \) over \(H^1_g(\Omega; \mathcal{M}) \) as a strict local minimum if there is a positive constant \(\beta \) such that

\[\frac{d^2}{dt^2} \mathcal{E}(w(t)) |_{t=0} \geq \beta \| v \|^2_1 \]

for any smooth curve \(w = w(t) \) in \(H^1_g(\Omega; \mathcal{M}) \) satisfying \(w(0) = u \) and \(w'(0) = v \). It follows from the calculation above that the function \(\phi(t) = \mathcal{E}(w(t)) \) satisfies

\[\phi''(0) = \langle \nabla v, \nabla v \rangle + \langle D^2 F(u) v, v, \lambda \rangle \geq \beta \| v \|^2_1. \]
for all \(v \in H^1_0(\Omega) \) satisfying \(DF(u) \cdot v = 0 \). As we shall see below this condition is closely tied to a stability condition for a linearization of the system (2.9).

The saddle point approach can be regarded as the limiting case of the penalty method. In the commonly used penalty approach, cf. \([4, 14, 15, 16, 20]\), one is seeking a local minimizer of the following regularized problem:

\[
\min_{v \in H^1_0(\Omega)} \mathcal{E}(v) + \frac{1}{2\epsilon} \int_\Omega |F(v)|^2 dx,
\]

where the penalty parameter \(\epsilon > 0 \) has to be properly chosen. The saddle point system (2.9) is formally obtained in the limit as \(\epsilon \) tends to zero. The advantage of the saddle point approach is that the standard mixed finite element theory, cf. \([9]\), tells us how to choose the finite element spaces properly to avoid possible instabilities, and there is no need to choose a penalty parameter.

3. Stability of the linearized problem. Throughout the rest of this paper we will assume that the pair \((u, \lambda)\) is a solution of the system (2.9), corresponding to a local minimum of \(\mathcal{E} \) over \(H^1_g(\Omega; M) \) and satisfying the regularity property

\[
(3.1) \quad u \in H^1_g(\Omega) \cap W^{1,\infty}(\Omega), \quad \lambda \in L^\infty(\Omega).
\]

In particular, \(u \) and \(\lambda \) are related by (2.10), and the second order condition (2.13) holds, i.e.,

\[
a(u, \lambda; v, \hat{v}) \geq 0
\]

for all \(v \in Z_u \), where the bilinear form \(a(u, \lambda; v, \hat{v}) \) is given by

\[
a(u, \lambda; v, \hat{v}) = \langle \nabla v, \nabla \hat{v} \rangle + \langle D^2 F(u)v \cdot \hat{v}, \lambda \rangle
\]

and

\[
Z_u = \{ v \in H^1_0(\Omega) : \langle DF(u) \cdot v, \mu \rangle = 0, \quad \mu \in L^2(\Omega) \}.
\]

For the analysis below, it will be useful to consider linearization of the saddle point system (2.9). More precisely, we consider systems of the following form:

Find \((v, \mu) \in H^1_0(\Omega) \times H^{-1}(\Omega) \) such that

\[
(3.2) \quad a(u, \lambda; v, \hat{v}) + \langle DF(u) \cdot \hat{v}, \mu \rangle = \langle f, v \rangle, \quad \hat{v} \in H^1_0(\Omega),
\]

\[
\langle DF(u) \cdot v, \hat{\mu} \rangle = \langle \sigma, \mu \rangle, \quad \hat{\mu} \in H^{-1}(\Omega),
\]

where \((u, \lambda)\) is the exact solution of (2.9) satisfying (3.1). Here \(f \in H^{-1}(\Omega) \) and \(\sigma \in H^1_0(\Omega) \) represent data.

Our goal is to show that this linear system is well-posed, i.e., we will show that the map

\[
(f, \sigma) \in H^{-1}(\Omega) \times H^1_0(\Omega) \mapsto (v, \mu) \in H^1_0(\Omega) \times H^{-1}(\Omega)
\]

is well defined and bounded. This will be established by verifying the standard stability conditions for saddle points systems; cf. \([8]\) or \([9]\). We will first establish the so-called inf-sup condition.

Theorem 3.1. Let \((u, \lambda)\) satisfy (3.1) and be related by (2.10). Then there is a positive constant \(\beta_1 \), depending on \(u \), such that

\[
(3.3) \quad \inf_{\mu \in H^{-1}(\Omega)} \sup_{v \in H^1_0(\Omega)} \frac{\langle DF(u) \cdot v, \mu \rangle}{\|v\|_1 \|\mu\|_{-1}} \geq \beta_1.
\]
Proof. For any $\mu \in H^{-1}(\Omega)$, there exists a $\varphi \in H^1_0(\Omega)$ such that
\begin{equation}
\langle \mu, \varphi \rangle = \|\mu\|^{-1}.
\end{equation}
Define $v = \varphi \cdot w / |w|$, where $w = DF(u)$. Then, by Leibniz’ rule, there exists a $c > 0$, depending on u, such that
\begin{equation}
\|\nabla v\|_0 \leq c \|\varphi\|_1.
\end{equation}
Furthermore,
\begin{equation}
\langle DF(u) \cdot v, \mu \rangle = \langle \varphi, \mu \rangle = \|\varphi\|_1 \|\mu\|^{-1}.
\end{equation}

Hence, the desired inequality holds with $\beta_1 = 1/c$. \qed

Next we need to consider the properties of the bilinear form $a(u, \lambda; \cdot, \cdot)$. It is straightforward to check that this bilinear form is bounded in the sense that
\begin{equation}
a(u, \lambda; v, \hat{v}) \leq C(u, \lambda)|v|_1|\hat{v}|_1, \quad v, \hat{v} \in H^1_0(\Omega),
\end{equation}
where the constant $C(u, \lambda)$ depends on the norms of u and λ indicated by (3.1).

The final key property for the stability analysis of the linear system (3.2) is the requirement that the bilinear form $a(u, \lambda; \cdot, \cdot)$ is coercive on the linearized constraint space Z_u. It should be noted that this bilinear form is, in general, not coercive on the entire space $H^1_0(\Omega)$. For example, in the simplest case when $M = S^{d-1}$, we have
\begin{equation}
a(u, \lambda; v, v) = \int_\Omega (|\nabla v|^2 - |\nabla u|^2 |v|^2) \, dx.
\end{equation}
On the other hand, the stability theory of [8] requires only that
\begin{equation}
a(u, \lambda; v, v) \geq \beta \|v\|_1^2, \quad v \in Z_u
\end{equation}
for a suitable positive constant β, and this is exactly the strict minimum condition (2.14). Therefore, if u is a strict local minimum, then the linear system (3.2) is well-posed.

Furthermore, if we restrict to two space dimensions, i.e. $d = 2$, then the coercivity condition (3.6) always holds. This is a consequence of the following theorem, which implies that in this case every critical point (u, λ) satisfying (3.1) is a strict local minimum, and the corresponding problem (3.2) is well-posed.

Theorem 3.2. Assume that $d = 2$. Let (u, λ) satisfy (3.1) and be related by (2.10). Then there is a positive constant β_2, depending on u, such that
\begin{equation}
a(u, \lambda; v, v) = \langle \nabla v, \nabla v \rangle + \langle DF(u) \cdot v, \lambda \rangle \geq \beta_2 \|v\|_1^2, \quad v \in Z_u.
\end{equation}

Remark 3.1. The result of this theorem will not be true, in general, if the target manifold M is of higher dimension. However, in [23] a sufficient condition on u and M, referred to as the “cut locus condition,” is given, which ensures that the operator associated with the bilinear form $a(u, \lambda; \cdot, \cdot)$, restricted to the tangent space Z_u, is invertible, and hence the linear system (3.2) will be well-posed.

Before we give the proof of the theorem we will establish an auxiliary result.
Lemma 3.1. Assume that the conditions given in Theorem 3.2 hold and define \(w = (w_1, w_2)^T = DF(u) \). Then,

\[
\lambda D^2 F(u)w^\perp \cdot w^\perp = -\frac{w_1^2|\nabla w_2|^2 + w_2^2|\nabla w_1|^2 - 2w_1w_2 \nabla w_1 \cdot \nabla w_2}{|w|^2}.
\]

Proof. It follows from (2.10) that the multiplier \(\lambda \) can be expressed as \(\lambda = -\nabla u : \nabla w/|w|^2 \). Hence,

\[
(3.8) \quad \lambda D^2 F(u)w^\perp \cdot w^\perp = \frac{\nabla u : \nabla w}{|w|^2} (F_{11}w_2^2 + F_{22}w_1^2 - 2F_{12}w_1w_2),
\]

where \(F_{ij} = \partial^2 F/\partial u_i \partial u_j \). Furthermore, since \(\nabla F(u) \equiv 0 \), we have from (2.3) that

\[
|\nabla w_1| + |\nabla w_2| = 0,
\]

while (2.4) implies that

\[
\nabla w_1 = F_{11}\nabla u_1 + F_{12}\nabla u_2.
\]

By combining these identities, we obtain

\[
(F_{11}w_2^2 + F_{22}w_1^2 - 2F_{12}w_1w_2)\nabla u_1 \cdot \nabla w_1
= w_2^2(F_{11}\nabla u_1 + F_{12}\nabla u_2) \cdot \nabla w_1 - w_1w_2(F_{22}\nabla u_2 + F_{12}\nabla u_1) \cdot \nabla w_1
= w_2^2|\nabla w_1|^2 - w_1w_2 \nabla w_1 \cdot \nabla w_2.
\]

A similar argument shows that

\[
(F_{11}w_2^2 + F_{22}w_1^2 - 2F_{12}w_1w_2)\nabla u_2 \cdot \nabla w_2 = w_1^2|\nabla w_2|^2 - w_1w_2 \nabla w_1 \cdot \nabla w_2,
\]

and hence the desired identity follows from (3.8). \(\square \)

Proof of Theorem 3.2. As above we let \(w = DF(u) \). For any \(v \in Z_u \), there exists an \(\alpha \) such that \(v = \alpha w^\perp \). In fact, we have

\[
(3.9) \quad \alpha = \frac{v \cdot w^\perp}{|w|^2}.
\]

From the estimates (2.5)–(2.6) and condition (3.1), we see that \(\alpha \in H^1_0(\Omega) \). The key identity we will use is the pointwise relation

\[
(3.10) \quad |\nabla v|^2 + \lambda D^2 F(u)v \cdot v = |\nabla (\alpha |w|)|^2.
\]

In order to verify this identity note that

\[
\nabla (\alpha |w|) = |w|\nabla \alpha + \frac{\alpha}{|w|} (w_1 \nabla w_1 + w_2 \nabla w_2).
\]

Hence,

\[
|\nabla (\alpha |w|)|^2 = |w|^2 |\nabla \alpha|^2 + \frac{|\alpha|^2}{|w|^2} |w_1 \nabla w_1 + w_2 \nabla w_2|^2
+ 2\alpha (w_1 \nabla \alpha \cdot \nabla w_1 + w_2 \nabla \alpha \cdot \nabla w_2).
\]
On the other hand,
\[|\nabla v|^2 = |w|^2 |\nabla \alpha|^2 + \alpha^2 |\nabla w|^2 + 2\alpha (w_1 \nabla \alpha \cdot \nabla w_1 + w_2 \nabla \alpha \cdot \nabla w_2). \]

Therefore,
\[|\nabla v|^2 - |\nabla (\alpha |w|)|^2 = \alpha^2 \left(|\nabla w|^2 - \frac{|w_1 \nabla w_1 + w_2 \nabla w_2|^2}{|w|^2} \right) \]
\[= \alpha^2 \left(\frac{|w_1|^2 |\nabla w_2|^2 + |w_2|^2 |\nabla w_1|^2 - 2w_1 w_2 \nabla w_1 \nabla w_2}{|w|^2} \right) \]
\[= -\lambda D^2 F(u) v \cdot v, \]
where the last identity follows from Lemma 3.1. Hence, we have verified (3.10).

Let \(\mu = \alpha |w| \). Then \(v = \frac{\mu}{|w|} w^\perp \), and hence
\[\nabla v = \frac{1}{|w|} w^\perp \cdot \nabla \mu + \mu \nabla \left(\frac{w^\perp}{|w|} \right). \]

Therefore, since \(u \) satisfies (3.1), Poincaré’s inequality implies that
\[\|\nabla v\|_0 \leq c(\|\nabla \mu\|_0 + \|\mu\|_0) \leq c\|\nabla (\alpha |w|)\|_0, \]
where the constant \(c \) depends on \(u \). Together with (3.10) this implies the desired inequality of the theorem. \(\blacksquare \)

4. A stable discretization. The purpose of this section is to analyze a finite element discretization of the constrained minimization problem (1.1). Due to some technical difficulties caused by the use of inverse inequalities to treat some nonlinear terms, cf. (4.3) below, the analysis given here is restricted to the case \(d = 2 \). As a consequence, the bilinear form \(a(u, \lambda; \cdot, \cdot) \) will satisfy the coercivity bound given in Theorem 3.2.

So, for the rest of the paper, we assume that \(d = 2 \) and that \(\Omega \subset \mathbb{R}^2 \) is a polygonal domain. Given a shape regular and quasi-uniform family of triangulation \(\{T_h\} \) of \(\Omega \), with a mesh size \(h < 1 \), let \(N_h \) denote the set of nodes associated with \(T_h \). We use \(V_h \) to denote the space of continuous piecewise linear functions and \(V_{h,0} = V_h \cap H^1_0(\Omega) \). The notations \(V_h \) and \(V_{h,0} \) will be used for the vector version of the corresponding spaces. We will use \(\pi_h \) to denote the usual nodal interpolation operators onto the spaces \(V_h \) and \(V_{h,0} \). Standard approximation properties of spaces of piecewise linear functions will be used below. In particular, we will use the estimates
\[\|(I - \pi_h)v\|_1 \leq Ch|v|_2, \quad v \in H^2(\Omega), \]
and
\[\|(I - P_h)v\|_{-1} \leq Ch\|v\|_0, \quad v \in L^2(\Omega). \]

Here, \(P_h : L^2(\Omega) \to V_{h,0} \) is the \(L^2 \) projection. Due to the quasi-uniformity of the mesh, the operator \(P_h \) can be extended to a uniformly bounded operator on \(H^{-1} \). Moreover, the following inverse inequalities hold:
\[\|v\|_{\infty} \leq C \log(h^{-1}) \|v\|_1, \quad \|v\|_1 \leq Ch^{-1} \|v\|_0, \quad v \in V_h. \]
Set \(g_h = \pi_h g \) (on \(\partial \Omega \)). We define
\[
V_{h,g} = \{ v \in V_h : v|_{\partial \Omega} = g_h \}.
\]
We will consider the following discretized minimization problem:
\[
(4.4) \quad \min_{v \in V_{h,g}} E(v) \text{ subject to } F(v) = 0 \text{ on } N_h.
\]
The Lagrange functional \(L : V_{h,g} \times V_{h,0} \to R \) is
\[
(4.5) \quad L(v, \mu) = E(v) + \int_{\Omega} \mu \pi_h F(v) \, dx \quad (v, \mu) \in V_{h,g} \times V_{h,0}.
\]
The first order condition defining the critical points of \(L \) leads to the following discrete counterpart of the nonlinear saddle point problem (2.9):

Find \((u_h, \lambda_h) \in V_{h,g} \times V_{h,0}\) such that
\[
(4.6) \quad \langle \nabla u_h, \nabla v \rangle + \langle \pi_h [DF(u_h) \cdot v], \lambda_h \rangle = 0, \quad v \in V_{h,0},
\]
\[
(4.7) \quad \langle \pi_h [DF(u_h) \cdot \lambda_h], \mu \rangle = 0, \quad \mu \in V_{h,0}.
\]

However, we shall first analyze the discrete counterpart of the linearized system (3.2).

For a given \((\hat{u}, \hat{\lambda}) \in V_{h,g} \times V_{h,0}\), let us define the bilinear form \(a_h(\hat{u}, \hat{\lambda} ; v, \hat{\lambda}) \) to be

\[
a_h(\hat{u}, \hat{\lambda} ; v, \hat{\lambda}) = \langle \nabla v, \nabla \hat{\lambda} \rangle + \langle \pi_h [D^2 F(\hat{u}) v \cdot \hat{\lambda}], \hat{\lambda} \rangle.
\]

Similarly, as in (3.2) for the continuous problem, the linearized problem for (4.6) is to find \((v, \mu) \in V_{h,0} \times V_{h,0}\) such that
\[
(4.7) \quad a_h(\hat{u}, \hat{\lambda} ; v, \hat{\lambda}) = \langle \nabla v, \nabla \hat{\lambda} \rangle + \langle \pi_h [D^2 F(\hat{u}) v \cdot \hat{\lambda}], \hat{\lambda} \rangle = 0
\]

\[
(4.8) \quad (\pi_h F(v_1, v_2, \ldots, v_k) \rangle |_{1} \leq C \sum_{i=1}^{k} \| D_{v_i} \Phi \|_{0, \infty} | v_i |_{1};
\]
\[
(4.9) \quad \| (\pi_h - I) \Phi(v_1, v_2, \ldots, v_k) \|_0 \leq C h \sum_{i=1}^{k} \| D_{v_i} \Phi \|_{0, \infty} | v_i |_{1}.
\]

Above, the constant \(C \) is independent of \(h \), \(\Phi \), and \(v_i \). The norm \(\| D_{v_i} \Phi \|_{0, \infty} \) stands for \(\| D_{v_i} \Phi(v_1, v_2, \ldots, v_k) \|_{0, \infty} \), with \(D_{v_i} \Phi(v_1, v_2, \ldots, v_k) = \partial \Phi(v_1, v_2, \ldots, v_k)/\partial v_i \).

Proof. For clarity, we shall only give the proof for \(k = 2 \). The extension of the proof for general cases is straightforward.

For an element \(e \in \mathcal{T}_h \), let \(p_i, i = 1, 2, 3 \) be the vertices of \(e \). Under the condition that the finite element mesh \(\mathcal{T}_h \) is regular and quasi-uniform, we have the following equivalent \(H^1 \) norms for \(v \in V_h \):
\[
(4.10) \quad |v|_{1,e} \equiv \sum_{i,j=1}^{3} |v(p_i) - v(p_j)|^2, \quad v \in V_h, e \in \mathcal{T}_h.
\]
In particular,

\[|\pi_h \Phi(v_1, v_2)|_{1,e}^2 \leq \sum_{i,j=1}^3 |\Phi(v_1(p_i), v_2(p_i)) - \Phi(v_1(p_j), v_2(p_j))|^2. \]

Thus, we get (4.8) from the following estimate:

\[
|\pi_h \Phi(v_1, v_2)|_{1,e}^2 \leq 2 \sum_{i,j=1}^3 \left(|\Phi(v_1(p_i), v_2(p_i)) - \Phi(v_1(p_j), v_2(p_j))|^2 + |\Phi(v_1(p_j), v_2(p_i)) - \Phi(v_1(p_j), v_2(p_j))|^2 \right)
\leq 2 \sum_{i,j=1}^3 \left(\|D_v \Phi\|_{0,\infty,e}^2 |v_1(p_i) - v_1(p_j)|^2 + \|D_{v_2} \Phi\|_{0,\infty,e}^2 |v_2(p_i) - v_2(p_j)|^2 \right).
\]

Next, we estimate (4.9). By the definition of the interpolation operator \(\pi_h \), we have

\[
(\pi_h - I) \Phi(v_1, v_2)(p) = \sum_{i=1}^3 \left[\Phi(v_1(p_i), v_2(p_i)) - \Phi(v_1(p), v_2(p)) \right] \chi_i(p) \quad p \in e,
\]

where \(\{\chi_i\}_{i=1}^3 \) are the barycentric coordinates on \(e \). From this, we see that

\[
\|(\pi_h - I) \Phi(v_1, v_2)\|_{0,e}^2 \leq C \sum_{i=1}^3 \int_e |(\Phi(v_1(p_i), v_2(p_i)) - \Phi(v_1, v_2)) \chi_i|^2
\]

(4.11) \[\leq C \sum_{i,j=1}^3 \int_e \left(\|D_{v_1} \Phi\|_{0,\infty,e}^2 |v_1(p_i) - v_1(p_j)|^2 + \|D_{v_2} \Phi\|_{0,\infty,e}^2 |v_2(p_i) - v_2(p_j)|^2 \right)
\leq Ch^2 \sum_{i,j=1}^3 \left(\|D_{v_1} \Phi\|_{0,\infty,e}^2 |v_1|_{1,e}^2 + \|D_{v_2} \Phi\|_{0,\infty,e}^2 |v_2|_{1,e}^2 \right).
\]

Thus, the estimate (4.9) is verified. \(\square \)

For the lemma above, it is essential that the functions \(v_i \) are finite element functions. If \(v_1 \in W^{1,\infty}(\Omega) \) and \(v_2 \in V_h \), then we obtain

\[
(\pi_h - I) \Phi(v_1, v_2) \|_{0,\infty} \leq Ch(\|D_{v_1} \Phi\|_{0,\infty} |v_1|_{1,\infty} + \|D_{v_2} \Phi\|_{0,\infty} |v_2|_{1,\infty}).
\]

The next result, which is essential for our analysis, is a discrete version of Theorem 3.2. As in the previous section, \((u, \lambda) \) is a solution of (2.9) satisfying (3.1).

Theorem 4.1. There exists positive constants \(\gamma_0 \) and \(h_0 \) such that, for \((\tilde{u}, \tilde{\lambda}) \in V_{h, a} \times V_{h0} \) satisfying

\[
(\tilde{u} - \pi_h u) + \|\tilde{\lambda} - P_h \lambda\|_{-1} \leq \gamma / \log^2(h^{-1})
\]

with \(h \leq h_0 \) and \(\gamma \leq \gamma_0 \), we have

\[
a_h(\tilde{u}, \tilde{\lambda}; v, v) \geq \beta_3 \|v\|_{1,\alpha}^2, \quad v \in Z_{h,a}.
\]

Here the constants \(\gamma_0, h_0, \beta_3 \) depend on \(u \).
In order to prove the above theorem, we need to derive some auxiliary results. The main idea is to relate (4.14) to the continuous problem, and then use Theorem 3.2 and some approximate properties of the operators π_h and P_h. As before, we shall use $\mathbf{w} = \nabla F(\mathbf{u})$, with \mathbf{u} being the true solution; see (3.1). Given a $\hat{\mathbf{u}}$ satisfying (4.13), we define $\hat{\mathbf{w}} = \nabla F(\hat{\mathbf{u}})$. For any $\mathbf{v} \in Z_{h,\hat{\mathbf{u}}}$, let us define

$$
\alpha(p_i) = \frac{\mathbf{v}(p_i) \cdot \hat{\mathbf{w}}^\perp(p_i)}{\|\hat{\mathbf{w}}(p_i)\|^2}, \quad p_i \in \mathcal{N}_h.
$$

From the above definition, it is clear that

$$
\alpha = \pi_h \left(\mathbf{v} \cdot \hat{\mathbf{w}}^\perp \right) / \|\hat{\mathbf{w}}\|^2 \in V_{h,0}, \quad \mathbf{v} = \pi_h(\alpha \hat{\mathbf{w}}^\perp).
$$

We have used the relation $\mathbf{w} \cdot \mathbf{v} = 0$ on \mathcal{N}_h in getting the last equality. Corresponding to the true solution \mathbf{u} and a given $\hat{\mathbf{u}} \in Z_{h,\hat{\mathbf{u}}}$, let $\varepsilon_h \in H^1_0(\Omega)$ be the function given by $\varepsilon_h = \alpha \mathbf{w}^\perp - \mathbf{v}$. We see clearly that

$$
\varepsilon_h + \mathbf{v} \in Z_{\mathbf{u}}.
$$

For a given $\hat{\mathbf{u}}$ satisfying (4.13), one can verify by assumption (i) on the constraint function F, cf. (2.1), and the inverse estimate (4.3) that

$$
|\mathbf{w}(p) - \hat{\mathbf{w}}(p)| = |\nabla F(\hat{\mathbf{u}}(p)) - \nabla F(\pi_h \mathbf{u}(p))| \leq c_1 \gamma, \quad p \in \mathcal{N}_h.
$$

Thus, by choosing γ small enough, one can guarantee that

$$
0 < c |\mathbf{w}(p)| \leq |\hat{\mathbf{w}}(p)| \leq C |\mathbf{w}(p)|, \quad p \in \mathcal{N}_h.
$$

Hence, we conclude that (4.13) implies that there is a constant C, depending only on u, such that

$$
\|\hat{\mathbf{u}}\|_1, \|\hat{\mathbf{u}}\|_{0,\infty} \leq C.
$$

Lemma 4.2. Let $(\hat{\mathbf{u}}, \hat{\lambda}) \in V_{h,\mathbf{g}} \times V_{h,0}$ satisfy (4.13). Then we have the estimate

$$
\left\| \pi_h \left(\varphi \frac{\mathbf{w}}{\|\mathbf{w}\|^2} \right) \right\|_{1} \leq C |\varphi|_1, \quad \varphi \in V_{h,0},
$$

where the constant C depends on \mathbf{u}.

Proof. Let $\psi = \pi_h(\varphi \mathbf{w} / \|\mathbf{w}\|^2)$. Using (4.10), we see that

$$
|\psi|^2 \leq C \sum_{i,j} \left| \varphi(p_i) \frac{\mathbf{w}(p_i)}{\|\mathbf{w}(p_i)\|^2} - \varphi(p_j) \frac{\mathbf{w}(p_j)}{\|\mathbf{w}(p_j)\|^2} \right|^2
\leq C \sum_{i,j} \left| \varphi(p_i) - \varphi(p_j) \right|^2 \frac{\|\mathbf{w}(p_i)\|^2}{\|\mathbf{w}(p_j)\|^2} \left(\frac{\mathbf{w}(p_i)}{\|\mathbf{w}(p_i)\|^2} - \frac{\mathbf{w}(p_j)}{\|\mathbf{w}(p_j)\|^2} \right)^2.
$$

It follows from (4.10) and (4.17)–(4.18) that

$$
\sum_{i,j} \frac{|\varphi(p_i) - \varphi(p_j)|^2}{\|\mathbf{w}(p_i)\|^2} \leq C |\varphi|_{1,c}^2.
$$
On the other hand, we have by (4.17)–(4.18) and assumption (iii) on the constraint function \(F \), cf. (2.2),

\[
\left| \frac{\mathbf{w}(p_i)}{\mathbf{w}(p_j)} - \frac{\mathbf{w}(p_i)}{\mathbf{w}(p_j)} \right|^2 \leq C|\mathbf{w}(p_i) - \mathbf{w}(p_j)|^2 \leq C|\mathbf{u}(p_i) - \mathbf{u}(p_j)|^2 \\
\leq C(\mathbf{u} - \pi_h \mathbf{u})(p_j) - (\mathbf{u} - \pi_h \mathbf{u})(p_j)^2 + |\pi_h \mathbf{u}(p_i) - \pi_h \mathbf{u}(p_j)|^2.
\]

Thus, we get by the inverse estimate (4.3) and (4.13) that

\[
\sum_{i,j} \left| \varphi(p_j) \right|^2 \left| \frac{\mathbf{w}(p_i)}{\mathbf{w}(p_j)} - \frac{\mathbf{w}(p_i)}{\mathbf{w}(p_j)} \right|^2 \\
\leq C\|\varphi\|_{0,\infty,\epsilon}^2 \cdot \left| \mathbf{u} - \pi_h \mathbf{u} \right|_{1,\epsilon}^2 + \|\varphi\|_{0,\epsilon}^2 \cdot \|\pi_h \mathbf{u}\|_{1,\infty,\epsilon}^2 \\
\leq C(\gamma^2 + \|\mathbf{u}\|_{1,\infty,\epsilon}^2)\|\varphi\|_{1,\epsilon}^2.
\]

Substituting (4.20)–(4.21) into (4.19), we obtain the desired bound. \(\square \)

Remark 4.1. If we apply Lemma 4.1 on the function \(\psi \) defined by \(\psi = \pi_h(\varphi_{\mathbf{w}}) \), we will get that

\[|\psi|_1 \leq C \log(h^{-1})|\varphi|_1. \]

The result we are getting here is better. We have removed the factor \(\log(h^{-1}) \).

Lemma 4.3. Let \((\mathbf{u}, \lambda) \in \mathbf{V}_{h, g} \times \mathbf{V}_{h, 0} \) satisfy (4.13). Then, there exist positive constants \(h_0 \) and \(\gamma_0 \), depending on \(\mathbf{u} \), such that

\[a(\mathbf{u}, \lambda; \mathbf{v}, \mathbf{v}) \geq \frac{\beta_2}{2} \|\mathbf{v}\|_1^2, \quad \mathbf{v} \in \mathbf{Z}_{h, \mathbf{u}} \]

for \(0 < h < h_0 \) and \(0 < \gamma \leq \gamma_0 \).

Proof. For any \(\mathbf{v} \in \mathbf{Z}_{h, \mathbf{u}} \), let \(\alpha \) and \(\varepsilon_h \) be defined as in (4.15) and (4.16). From \(\pi_h(\alpha \pi_h \mathbf{w}^+) = \pi_h(\alpha \mathbf{w}^+) \), we have

\[
\varepsilon_h = (I - \pi_h)(\alpha \mathbf{w}^+) + \pi_h[\alpha \pi_h(\mathbf{w} - \mathbf{w}^+)].
\]

From (4.12) and also using the inverse inequality (4.3), we get that

\[
\|I - \pi_h)(\alpha \mathbf{w}^+)\|_1^2 \leq C h^2 (\|\mathbf{w}^+\|_{0,\infty,\epsilon}^2 + \|\alpha\|_{0,\infty}^2 + \|\pi_h(\mathbf{w} - \mathbf{w}^+)\|_{1,\infty,\epsilon}^2)
\]

\[
\leq C h^2 \log^2(h^{-1}) \|\mathbf{u}\|_{1,\infty,\epsilon}^2 |\alpha|_1^2.
\]

Note that there exists a \(\xi \) such that

\[
\pi_h[\alpha \pi_h(\mathbf{w} - \mathbf{w}^+)] = \pi_h\left[\alpha \pi_h(D^2 \mathbf{F}(\xi)(\pi_h \mathbf{u} - \mathbf{u}))^+) \right].
\]

A repeated application of (4.8) and (4.3) gives

\[
|\pi_h[\alpha \pi_h(\mathbf{w} - \mathbf{w}^+)]|_1^2 \leq C \log^4(h^{-1}) |\alpha|_1^2 \pi_h \mathbf{u} - \mathbf{u}^2_1.
\]

From Lemma 4.2, we see that

\[
|\alpha|_1 \leq C|\mathbf{v}|_1.
\]

Combining (4.23)–(4.25) with (4.13), we see that

\[
|\varepsilon_h|_1^2 \leq C(h^2 \log^2(h^{-1}) |\mathbf{u}|_{1,\infty,\epsilon}^2 + \gamma^2) |\alpha|_1^2 \leq C(h^2 \log^2(h^{-1}) |\mathbf{u}|_{1,\infty,\epsilon}^2 + \gamma^2)|\mathbf{v}|_1^2.
\]
The following estimate follows from (3.5) and (3.7):

\begin{equation}
(4.27) \quad a(u, \lambda; v, v) = a(u, \lambda; v + \varepsilon_h, v + \varepsilon_h) - a(u, \lambda; v, \varepsilon_h) + a(u, \lambda; \varepsilon_h, \varepsilon_h) \geq C(\beta_2\|v + \varepsilon_h\|^2_1 - |v|_1^1|\varepsilon_h|_1^1 - |\varepsilon_h|^2_1).
\end{equation}

Choosing \(h \) and \(\gamma \) small enough, we obtain the desired result from (4.26) and (4.27). \(\square \)

Proof of Theorem 4.1. In the proof, we always assume that \(h \) and \(\gamma \) are small. Note that

\begin{align*}
(4.28) \quad a_h(\hat{u}, \hat{\lambda}; v, v) = \langle \pi_h[D^2F(\hat{u})v \cdot v], \hat{\lambda} \rangle - \langle D^2F(u)\bar{v} \cdot \bar{v}, \lambda \rangle \\
= \langle \pi_h[D^2F(\hat{u})v \cdot v], \hat{\lambda} - \lambda \rangle + \langle (\pi_h - I)[D^2F(\hat{u})v \cdot v], \lambda \rangle \\
+ \langle (D^2F(\hat{u}) - D^2F(u))v \cdot v, \lambda \rangle = I_1 + I_2 + I_3.
\end{align*}

The meaning of \(I_i \) is self-explainable. Since \(\lambda \in L^2(\Omega) \), we obtain from (4.13) that

\[\|\hat{\lambda}_h - \lambda\|_{-1} \leq \|\hat{\lambda}_h - P_h\lambda\|_{-1} + \|P_h\lambda - \lambda\|_{-1} \leq \gamma/\log^2(h^{-1}) + Ch\|\lambda\|_0. \]

Using Lemma 4.1, we see that

\[|\pi_h[D^2F(\hat{u})v \cdot v]|_1 \leq C(\|D^2F(\hat{u})\cdot v\|_{0, \infty}^1|v|_1^1 + \|v\|_{0, \infty}^2\|D^3F(\hat{u})\|_{0, \infty}^1|\hat{u}|_1^1) \]

\[\leq C\log^2(h^{-1})\|v\|_1^1. \]

For a small \(h \), a combination of the above two inequalities leads to

\[|J_1| = |(\pi_h[D^2F(\hat{u})v \cdot v], \hat{\lambda}_h - \lambda)| \leq C\log^2(h^{-1})\|v\|_1^1(\gamma/\log^2(h^{-1}) + Ch\|\lambda\|_0) \leq C\gamma\|v\|_1^1. \]

Similarly, we use Lemma 4.1 to prove that

\[|I_2| = ||(\pi_h - I)[D^2F(\hat{u})v \cdot v], \lambda|| \]

\[\leq ||(\pi_h - I)[D^2F(\hat{u})v \cdot v]||_0 \cdot \|\lambda\|_0 \leq Ch\log^2(h^{-1})\|v\|_1^1. \]

and

\[|I_3| = ||(D^2F(\hat{u}) - D^2F(u))v \cdot v, \lambda||_0 \cdot \|\lambda\|_0 \leq C\gamma\|v\|_1^1. \]

Choosing \(h \) and \(\gamma \) small enough, we obtain the desired result from Lemma 4.3 and the estimates above of the three terms appearing in (4.28). \(\square \)

Theorem 4.2. Assume that \((\hat{u}, \hat{\lambda}) \in V_{h,g} \times V_{h,0} \) satisfies the condition (4.13). There exists a constant \(\beta_4 > 0 \), which depends on \(u \), such that

\begin{equation}
(4.29) \quad \inf_{\mu \in V_{h,g}} \sup_{v \in V_{h,0}} \frac{\langle \pi_h[D^2F(\hat{u})v \cdot v], \mu \rangle}{\|\mu\|_{-1}\|v\|_1} \geq \beta_4.
\end{equation}

Proof. For the \(\varphi \) given in (3.4), let \(\varphi_h = P_h\varphi \). Then, we see that

\[\frac{\langle \mu_h, \varphi_h \rangle}{\|\varphi_h\|_1} \geq \beta_1\|\mu_h\|_{-1}. \]
Define $v_h = \pi_h[\varphi_h \frac{D F(u)}{|D F(u)|}]$. Then,

$$
\langle \pi_h[D F(\hat{u}) \cdot v_h], \mu_h \rangle = \langle \mu, \varphi_h \rangle.
$$

From Lemma 4.2, one gets that $|v_h|_1 \leq C|\varphi_h|_1$. By collecting these estimates, the theorem is established.

Together with the Theorems 4.1 and 4.2, the saddle point theory given in [8] or [9] assures existence, stability, and uniqueness of the solution of the linearized saddle point system (4.7), as long as (\hat{u}, λ) satisfies (4.13). In the next section, we shall use these properties to prove some results for the corresponding nonlinear systems.

Remark 4.2. If we replace $V_h,0$ by V_h in (4.29), the inf-sup condition (4.29) may not be satisfied. This is why we use the $V_h,0$, instead of V_h, as finite element space for the Lagrange multiplier.

5. The discrete nonlinear problem

The main purpose of this section is to establish existence and uniqueness of solutions of the discretized nonlinear saddle point problem (4.6) in a neighborhood of a continuous solution (u, λ) of the system (2.9).

As above, we assume that (u, λ) corresponds to a local minimum of the functional E over $H_0^1(\Omega; M)$ and that the regularity assumption (3.1) holds. Furthermore, we will show that the discrete solutions converge to the continuous solution with a linear rate with respect to the mesh parameter h. However, we start by summarizing some properties of the linearized saddle point system.

For notational simplicity, we shall use X, X_h and X_h^* defined by $X = H_0^1(\Omega) \times H^{-1}(\Omega)$, $X_h = V_h \times V_h$, and $X_h^* = V_h^* \times V_h^*$. Let $\|\cdot\|_X$ denote the norm on the product space $H_0^1(\Omega) \times H^{-1}(\Omega)$, and let $\|\cdot\|_{X^*}$ denote the norm on the dual space $X^* = H^{-1}(\Omega) \times H_0^1(\Omega)$. The norm $\|\cdot\|_{L(X,X^*)}$ will be used to denote the norm of a bounded linear operator from X to X^*. The spaces X_h and X_h^* are equipped with the norm of X, while X_h^* is equal to X_h as a set, but equipped with the dual norm of X with respect to the L^2 inner products. Similarly, the norm $\|\cdot\|_{L(X_h,X_h^*)}$ is the associated operator norm.

Let $x = (u, \lambda)$ be a solution of (2.9). Corresponding to x, let $G(x) \in X^*$ be given by

$$
\langle G(x), y \rangle = \langle \nabla u, \nabla v \rangle + \langle D F(u) \cdot v, \lambda \rangle + \langle F(u), \mu \rangle, \quad y = (v, \mu) \in X.
$$

As usual, $\langle \cdot, \cdot \rangle$ is the duality pairing which extends the standard L^2 inner product. Associated with G, we define a mapping $G'(x) : X \to X^*$ by

$$
G'(x) y, \hat{y} = a(u, \lambda; v, \hat{v}) + \langle D F(u) \cdot \hat{v}, \mu \rangle + \langle D F(u) \cdot \hat{v}, \mu \rangle
$$

for all $y = (v, \mu), \hat{y} = (\hat{v}, \hat{\mu}) \in X = H_0^1(\Omega) \times H^{-1}(\Omega)$. The operator $G'(x)$ is formally the Fréchet differential of G at x.

Recall from the saddle point theory given in [8, 9] that Theorems 3.2–3.1 imply that the system (3.2) has a unique solution (v, μ), which depends continuously on $(f, \sigma) \in X^*$. Thus we have the following result.

Theorem 5.1. If (u, λ) satisfies the regularity assumption (3.1), then the map $G'(x)$ defined by (5.1) is an isomorphism from $X = H_0^1(\Omega) \times H^{-1}(\Omega)$ to $X^* = H^{-1}(\Omega) \times H_0^1(\Omega)$.

For the discretized saddle point problem, let $G_h : X_h^* \to X_h^*$ be the map defined by (4.6). For any $\hat{x} = (\hat{u}, \hat{\lambda}) \in X_h^*$, $G_h(\hat{x})$ is the operator that satisfies

$$
\langle G_h(\hat{x}), \hat{y} \rangle = \langle \nabla \hat{u}, \nabla \hat{v} \rangle + \langle \pi_h[D F(\hat{u}) \cdot \hat{v}], \hat{\lambda} \rangle + \langle \pi_h F(\hat{u}), \hat{\mu} \rangle, \quad \hat{y} = (\hat{v}, \hat{\mu}) \in X_h.
$$
Thus, problem (4.6) is, in fact, to find \(x_h = (u_h, \lambda_h) \in X_{h,g} \) such that

\[
(G_h(x_h), y) = 0, \quad y = (\hat{v}, \hat{\mu}) \in X_h.
\]

Let \(G'_h(\hat{x}) \) be the Fréchet derivative of \(G_h \) at \(\hat{x} = (\hat{u}, \hat{\lambda}) \in X_{h,g} \). Then, \(G'_h(\hat{x}) : X_h \to X_h^* \) is the linear operator given by

\[
(G'_h(\hat{x})y, \hat{y}) = a_h(\hat{u}, \hat{\lambda}; v, \hat{v}) + \langle \pi_h[D^2F(\hat{u})v \cdot \hat{v}], \mu \rangle + \langle \pi_h[D^2F(\hat{u}) \cdot v], \hat{\mu} \rangle,
\]

\[
y = (v, \mu) \in X_h, \quad \hat{y} = (\hat{v}, \hat{\mu}) \in X_h.
\]

By Theorems 4.1–4.2, the following result is a consequence of the theory given in [8, 9].

Theorem 5.2. Assume that \(\hat{x} = (\hat{u}, \hat{\lambda}) \in X_{h,g} \) satisfies the condition (4.13). For sufficiently small \(h \) and \(\gamma \), the map \(G'_h(\hat{x}) \) is an isomorphism from \(X_h \) to \(X_h^* \). Moreover,

\[
\|G'_h(\hat{x})^{-1}\|_{L(X_h^*, X_h)} \leq M,
\]

where \(M \) is a constant independent of \(h \) and \(\hat{x} = (\hat{u}, \hat{\lambda}) \).

Define \(x_\ast = (\pi_h u, P_h \lambda) \), and set \(y_\ast = G_h(x_\ast) \). We can use similar techniques as for Theorems 4.1 to prove the following lemma.

Lemma 5.1. For any \(\hat{x} = (\hat{u}, \hat{\lambda}) \in X_{h,g} \) satisfying (4.13), we have

\[
\|G'_h(\hat{x}) - G'_h(x_\ast)\|_{L(X_h, X_h^*)} \leq C \log(h^{-1}) \|\hat{x} - x_\ast\|_X,
\]

where \(C \) depends on \(u \) and \(\lambda \).

Proof. By the definition of \(G'_h \), we have, for any \(y = (v, \mu) \in X_h \) and \(\hat{y} = (\hat{v}, \hat{\mu}) \in X_h \),

\[
\langle (G'_h(\hat{x}) - G'_h(x_\ast))y, \hat{y} \rangle = \langle \pi_h[D^2F(\hat{u})v \cdot \hat{v}], \hat{\lambda} - P_h \lambda \rangle
\]

\[
+ \langle \pi_h[(D^2F(\hat{u}) - D^2F(\pi_h u))v \cdot \hat{v}], P_h \lambda \rangle
\]

\[
+ \langle \pi_h[(D^2F(\hat{u}) - D^2F(\pi_h u)) \cdot \hat{v}], \mu \rangle
\]

\[
+ \langle \pi_h[(D^2F(\hat{u}) - D^2F(\pi_h u)) \cdot \hat{v}], \hat{\mu} \rangle.
\]

It is clear that

\[
\langle \pi_h[D^2F(\hat{u})v \cdot \hat{v}], \hat{\lambda} - P_h \lambda \rangle \leq \|\pi_h[D^2F(\hat{u})v \cdot \hat{v}]\|_1 \|\hat{\lambda} - P_h \lambda\|_{-1}.
\]

As in the proof of Lemma 4.1, we deduce

\[
\|\pi_h[D^2F(\hat{u})v \cdot \hat{v}]\|_1 \leq C\|D^2F(\hat{u})v\|_{0,\infty} \cdot \|\hat{v}\|_1
\]

\[
+ C\|D^2F(\hat{u})v\|_{0,\infty} \cdot \|v\|_1 \cdot \|\hat{v}\|_{0,\infty}
\]

\[
+ C\|D^2F(\hat{u})v\|_{0,\infty} \cdot \|v\|_{0,\infty} \cdot \|\hat{v}\|_{0,\infty}.
\]

Then, we further get by the inverse inequality (4.3)

\[
\|\pi_h[D^2F(\hat{u})v \cdot \hat{v}]\|_1 \leq C \log^3(h^{-1})\|v\|_1 \cdot \|\hat{v}\|_1.
\]

Plugging this in (5.6), together with (4.13), leads to

\[
\langle \pi_h[D^2F(\hat{u})v \cdot \hat{v}], \hat{\lambda} - P_h \lambda \rangle \leq C \gamma \log(h^{-1})\|v\|_1 \|\hat{v}\|_1.
\]
Similarly, we deduce by (2.2), the inverse inequality (4.3), and (4.13)
\[
\| \pi_h [D^2 F(\hat{u}) - D^2 F(\pi_h u)] \cdot \hat{v} \|_1 \\
\leq C t \log^3 (h^{-1}) \| \hat{u} - \pi_h u \|_1, \| v \|_1, \| \hat{v} \|_1 \\
\leq C t \log (h^{-1}) \| v \|_1, \| \hat{v} \|_1.
\]

Estimating the last two terms in (5.5) by Lemma 4.1, (4.3), and (4.13), we obtain the result. The constants \(C\) in the estimates depend on \(u\) and \(\lambda\).

At this point, we need to recall the implicit function theorem as, for example, given in Lemma 1 of [10]. From the implicit function theorem, we can conclude that if there is a \(\delta > 0\) such that
\[
(5.7) \quad \hat{x} \in X_h, \| \hat{x} - x_* \|_X \leq \delta \implies \| G_h'(\hat{x}) - G_h'(x_*) \|_{L(X_h, X^*)} \leq \frac{1}{2M},
\]
then the equation
\[
(5.8) \quad G_h(\hat{x}) = \hat{y}
\]
has a unique solution for all \(\hat{y}\) satisfying
\[
\| \hat{y} - y_* \|_{X^*} \leq \frac{\delta}{2M}.
\]
Here \(M\) is the positive constant appearing in Theorem 5.2. From Lemma 5.1, we see that the condition (5.7) is fulfilled if we choose \(\delta = 1/(2MC \log(h^{-1}))\). Hence, we have that (5.8) has a unique solution \(\hat{x}\) satisfying
\[
\| \hat{x} - x_* \|_X \leq \frac{1}{2MC \log(h^{-1})}
\]
for all \(\hat{y}\) such that
\[
\| \hat{y} - y_* \|_{X^*} \leq \frac{1}{4M^2C \log(h^{-1})}.
\]

Furthermore, we can conclude from Lemma 1 of [10] that
\[
(5.9) \quad \| \hat{x} - x_* \|_X \leq 2M \| \hat{y} - y_* \|_{X^*}.
\]

Note that our desired equation is \(G_h(x) = 0\). Thus, if we can verify that
\[
(5.10) \quad \| G_h(x_*) \|_{X^*} = \| y_* \|_{X^*} \leq \frac{1}{4M^2C \log(h^{-1})},
\]
we can conclude existence and uniqueness of the solution of this equation. If we assume more smoothness on \(u\), this is a consequence of the following lemma.

Lemma 5.2. Assume that \(u \in H^2(\Omega) \cap W^{1,\infty}(\Omega)\). Then we have
\[
\| G_h(x_*) \|_{X^*} \leq C h, \quad \text{with } x_* = (\pi_h u, P_h \lambda).
\]

Proof. It suffices to prove that
\[
(5.11) \quad \| \langle G_h(x_*), \hat{x} \rangle \|_X \leq C h \| \hat{x} \|_X, \quad \hat{x} = (v, \mu) \in X_h.
\]
We have by (2.9) and the definition of G_h
\begin{equation}
\langle G_h(x_0), \hat{x} \rangle = \langle \nabla (\pi_h u - u), \nabla v \rangle + \langle \pi_h F(\pi_h u), \mu \rangle - \langle F(u), \mu \rangle + \langle \pi_h [DF(\pi_h u) \cdot v], P_h \lambda \rangle - \langle DF(u) \cdot v, \lambda \rangle.
\end{equation}

It is clear that
\begin{equation}
|\langle \nabla (\pi_h u - u), \nabla v \rangle| \leq |\pi_h u - u|_1 \cdot |v|_1 \leq C h \|u\|_2 \cdot |v|_1.
\end{equation}

Note that since $\pi_h F(\pi_h u) = \pi_h F(u)$, we obtain from (4.1) that
\begin{equation}
|\langle \pi_h F(\pi_h u), \mu \rangle - \langle F(u), \mu \rangle| = |\langle \pi_h - I \rangle F(u), \mu \rangle| \\
\leq \|\pi_h - I\|_1 \cdot \|\mu\|_{-1} \leq C h \|F(u)\|_2 \cdot \|\mu\|_{-1}.
\end{equation}

Furthermore, by the assumptions on F and the estimates (4.1), (4.2), and (4.12), we get
\begin{equation}
|\langle \pi_h [DF(\pi_h u) \cdot v], P_h \lambda \rangle - \langle DF(u) \cdot v, \lambda \rangle| \\
\leq \|\pi_h - I\|_1 \cdot \|DF(u) \cdot v\|_1 \cdot \|P_h \lambda - \lambda\|_{-1} \\
\leq C h \|DF(u) \cdot v\|_1 \cdot \|\lambda\|_0 \leq C h \|DF(u)\|_1, \|\lambda\|_0 \cdot \|v\|_1.
\end{equation}

Substituting (5.13)–(5.15) into (5.12), gives (5.11). \hfill \Box

From this lemma, we see that y_* satisfies (5.10) for small h. Thus, there exists a unique solution for (4.6). Moreover, the solution satisfies the estimate (5.9). We state this conclusion more clearly in the following theorem.

Theorem 5.3. Assume that $u \in H^2(\Omega) \cap W^{1, \infty}(\Omega)$. Then, for sufficiently small h, there exists a unique saddle point $(u_h, \lambda_h) \in X_h$ for (4.6) in a small neighborhood of $(\pi_h u, P_h \lambda)$. Moreover, the following error estimate holds:
\[\|u_h - u\|_1 + \|\lambda_h - \lambda\|_{-1} \leq C h. \]

6. Preconditioned iterative methods. We shall combine a preconditioning technique with the classical Newton’s method; cf., for example [27, chapter 7], to solve the nonlinear saddle point problem (4.6) or equivalently (5.2). Of course, Newton’s method will only converge if the initial value is close enough to the true solution. Therefore, in practical computations, it is often necessary to use another global method to obtain an appropriate initial value. A systematic study of such techniques is beyond the scope of the present work. However, some alternatives to supply a good initial value are given in the example in section 7.2 below.

Let $x_0 = (u_0^h, \lambda_0^h) \in X_h$ be a suitable initial guess. The Newton iteration is given by
\begin{equation}
x_{n+1} = x_n - G'_h(x_n)^{-1}G_h(x_n), \quad n = 0, 1, \ldots.
\end{equation}

Assume that the initial guess (u_0^h, λ_0^h) satisfies (4.13), with a small γ. Using Theorem 5.2, combined with Lemma 5.1 and the standard properties of Newton’s method, it follows that all $x_n = (u_n^h, \lambda_n^h)$ satisfy (4.13), with the same γ, and all the operators $G'_h(x_n)$ are invertible. Moreover, the sequence $\{(u_n^h, \lambda_n^h)\}$ converges with almost order 2, i.e.,
\[\|u_{n+1}^h - u_h\|_1 + \|\lambda_{n+1}^h - \lambda_h\|_{-1} \leq C \log^2(h^{-1}) (\|u_n^h - u_h\|_1 + \|\lambda_n^h - \lambda_h\|_{-1})^2. \]
For the iteration (6.1), we need to invert $G_h'(x_n)$, i.e., we need to solve the system
\begin{equation}
G_h'(x_n)(x_{n+1} - x_n) = -G_h(x_n).
\end{equation}
From Theorem 5.2, we obtain that $G_h'(x_n)$ is an isomorphism from X_h to X_h^*. Moreover, $\|G_h'(x_n)\|_{L(X_h, X_h^*)}$ is bounded, and the bound is independent of h and n if the initial value is chosen close enough to the true solution. Hence, based on preconditioning theory as in [2, 3], we see that any isomorphism from X_h^* to X_h is an optimal preconditioner for system (6.2). Due to this, we can construct some efficient preconditioners for (6.2). Let Δ_h and Δ_h^* be the finite element discretizations for the vector and scalar Laplacian operators Δ and Δ^* on $V_{h,0}$ and $V_{h,0}$, respectively. To be precise, $\Delta_h : V_{h,0} \mapsto V_{h,0}$ is the mapping defined by
\begin{equation}
\langle \Delta_h u_h, v \rangle = -\langle \nabla u_h, \nabla v \rangle, \quad v \in V_{h,0}.
\end{equation}
Then the operator
\begin{equation}
T_h = \begin{pmatrix} -\Delta^{-1}_h & 0 \\ 0 & -\Delta_h \end{pmatrix}
\end{equation}
is an isomorphism from X_h^* to X_h, with associated operator norm bounded independently of h. Thus, $T_h \circ G_h'(x_n)$ maps X_h to X_h, with condition numbers bounded independently of h and n. However, in order to make the preconditioner efficient, it is necessary to simplify the evaluation of the operator T_h. We therefore replace Δ^{-1}_h by another spectral equivalent operator, i.e., by a preconditioner for the discrete Laplacian using domain decomposition or multigrid methods [31, 33]. The linear system (6.2) is then solved by the preconditioned minimum residual method, with the modified T_h operator \hat{T}_h as the preconditioner; cf. [28] or [18, Chapter 6]. Since the condition number of the operator $\hat{T}_h \circ G_h'(x_n)$ is bounded independent of h and n, so is the convergence of the iteration.

7. Numerical experiments. Numerical experiments for the harmonic map problem with $M = S^1$, i.e., the unit circle, will be done. The domain Ω is always a square. The domain is triangulated by first dividing it into $h \times h$ squares. Then, each square is divided into two triangles by the diagonal with a negative slope of Ω, which is further divided into triangles by the diagonal with a negative slope. The finite element problem (4.6) is to find $(u_h, \lambda_h) \in V_{h,0} \times V_{h,0}$ such that
\begin{equation}
\langle \nabla u_h, \nabla v_h \rangle + \langle \pi_h(u_h \cdot v_h), \lambda_h \rangle = 0, \quad v_h \in V_{h,0},
\end{equation}
\begin{equation}
\langle \pi_h(|u_h|^2 - 1), \mu_h \rangle = 0, \quad \mu_h \in V_{h,0}.
\end{equation}
For the finite element method, we need to integrate over each element $e \in T_h$. If we use the three vertices of e as the integration points, then the mass matrix reduces to a diagonal matrix. Correspondingly, the system (7.1) reduces to
\begin{equation}
-L_h u_h + \lambda_h u_h = 0 \quad \text{on } N_h,
\end{equation}
\begin{equation}
|u_h|^2 - 1 = 0 \quad \text{on } N_h.
\end{equation}
Above L_h is the standard five-point finite difference discrete Laplacian approximation. For the Newton iteration (6.1), we need to solve the system
\begin{equation}
\begin{pmatrix} -L_h + A_n & \text{diag}(u_n) \\ \text{diag}(u_n)^t & 0 \end{pmatrix} \begin{pmatrix} u_{n+1} - u_n \\ \lambda_{n+1} - \lambda_n \end{pmatrix} = \begin{pmatrix} L_h u_n - \lambda_n u_n \\ (1 - |u_n|^2)/2 \end{pmatrix} \quad \text{on } N_h.
\end{equation}
Newton solver: accuracy. More precisely, we shall compare the behavior of the exact and an inexact with a modified method where the linear system (6.2) is only solved to a given ac-

the discretization.

In the following, we will investigate if it is possible to replace Newton’s method with a modified method where the linear system (6.2) is only solved to a given accuracy. More precisely, we shall compare the behavior of the exact and an inexact Newton solver:

- The exact Newton solver: This refers to the scheme where we solve the linear system (6.2) with a preconditioned minimum residual method, which is terminated when the residual is reduced by a factor of 10^{10}.
- The inexact Newton solver: This refers to the scheme where the Newton iterations (6.2) are terminated when the residual is reduced by a factor of 10^2.

In the tables, we show the numerical errors e_n versus the iteration number n, where e_n is defined as

$$e_n = \| u_h^n - u_h \|_{H^1_h} + \| \lambda_h^n - \lambda_h \|_{H^{-1}_h},$$

where $\| x_h \|^2_{H^1_h} = (\pi_h x_h)^t (I - L_h) \pi_h x_h$ and $\| y_h \|^2_{H^{-1}_h} = (\pi_h y_h)^t (I - L_h)^{-1} \pi_h y_h$.

7.1. A smooth harmonic map. In the first example we consider a smooth harmonic map

$$u = (\sin(\theta(x,y)), \cos(\theta(x,y))),$$

with $\theta = k \log(\sqrt{(x-a)^2 + (y-b)^2})$ and $\lambda = -|\nabla u|^2$ on $\Omega = [0,1] \times [0,1]$. We have used $a = b = -0.1$ and $k = 3$. The initial guess was $u_0 = 2(\pi_h u + \epsilon)$, where ϵ is a random noise vector field with values between -0.3 and 0.3 and $\lambda_0 = 0$.

When using the inexact Newton solver, the stop criterion is obtained in less than 20 iterations, with a few exceptions in the first nonlinear iterations where the maximum was 80. For the exact Newton solver, the stop criterion is obtained in less than 50 iterations with a few exceptions in the first nonlinear iterations where as much as 300 iterations were required on the finest mesh. Hence, except for the first iterations, the required number of iterations seems to be bounded independent of the mesh size. This is due to the property of the preconditioner.

In Table 1 we estimate the convergence of the L^2 and H^1 norms of the error of $u - u_h$ in terms of h. We observe linear convergence in H^1 and quadratic convergence in L^2, respectively. The convergence in H^1 is in accordance with the error estimate of Theorem 5.1. The improved rate of convergence in L^2 has not been justified in this paper, but this effect is in agreement with standard linear theory. Also, in the
Table 1

The L^2 and H^1 error of u and the L^2 error of λ with respect to h.

<table>
<thead>
<tr>
<th>h</th>
<th>2^{-2}</th>
<th>2^{-3}</th>
<th>2^{-4}</th>
<th>2^{-5}</th>
<th>2^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|u - u_h|_0$</td>
<td>6.7e-1</td>
<td>3.6e-2</td>
<td>9.4e-3</td>
<td>2.4e-3</td>
<td>6.0e-4</td>
</tr>
<tr>
<td>$|u - u_h|_1$</td>
<td>4.6</td>
<td>1.1</td>
<td>5.7e-1</td>
<td>2.9e-1</td>
<td>1.4e-1</td>
</tr>
<tr>
<td>$|\lambda - \lambda_h|_0$</td>
<td>2.2e-2</td>
<td>1.6e-3</td>
<td>1.5e-4</td>
<td>1.2e-5</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

Convergence for the exact and inexact Newton solver with $h = 2^{-4}$.

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>e_7</th>
<th>e_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>3.2e+1</td>
<td>9.3</td>
<td>1.7</td>
<td>2.3e-1</td>
<td>4.0e-3</td>
<td>3.4e-6</td>
<td>2.6e-9</td>
<td>-</td>
</tr>
<tr>
<td>Inexact</td>
<td>3.2e+1</td>
<td>9.5</td>
<td>1.7</td>
<td>2.4e-1</td>
<td>3.5e-3</td>
<td>1.1e-5</td>
<td>1.0e-7</td>
<td>2.7e-9</td>
</tr>
</tbody>
</table>

Table 3

Convergence for the inexact Newton solver.

<table>
<thead>
<tr>
<th>$h \setminus n$</th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>e_7</th>
<th>e_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{-2}</td>
<td>9.2</td>
<td>2.6</td>
<td>4.7e-1</td>
<td>2.8e-2</td>
<td>1.9e-4</td>
<td>9.9e-7</td>
<td>7.7e-9</td>
<td>7.9e-10</td>
</tr>
<tr>
<td>2^{-3}</td>
<td>1.6e+1</td>
<td>4.7</td>
<td>9.1e-1</td>
<td>7.6e-2</td>
<td>8.8e-4</td>
<td>4.0e-6</td>
<td>7.9e-8</td>
<td>1.4e-9</td>
</tr>
<tr>
<td>2^{-4}</td>
<td>3.2e+1</td>
<td>9.5</td>
<td>1.7</td>
<td>2.4e-1</td>
<td>3.5e-3</td>
<td>1.1e-5</td>
<td>1.0e-7</td>
<td>2.7e-9</td>
</tr>
<tr>
<td>2^{-5}</td>
<td>6.4e+1</td>
<td>2.4e+1</td>
<td>3.6</td>
<td>9.6e-1</td>
<td>1.5e-2</td>
<td>4.7e-5</td>
<td>1.5e-6</td>
<td>6.0e-9</td>
</tr>
</tbody>
</table>

present example the observed convergence for $\lambda - \lambda_h$ is better than that Theorem 5.1 predicts.

A comparison of the exact Newton and inexact Newton solvers is shown in Table 2 for mesh size $h = 2^{-4}$. The convergence for other mesh sizes is similar. These tests indicate that the inexact Newton solver is nearly as efficient as the exact Newton solver. In Table 3, the convergence of the inexact Newton solver with different mesh sizes is shown. It shows the mesh independence property of the preconditioned iterative solver.

7.2. A harmonic map with singularity. As it is well known, the solution of the harmonic map problem is generally not unique and may have singularities even with smooth data. In order to show the applicability of our algorithms for these problems, we test a problem with a singular solution, i.e., $u = (x/r, y/r)$, with $r = k \sqrt{x^2 + y^2}$ and $\lambda = -|\nabla u|^2$ on $\Omega = [-0.5, 0.5] \times [0.5, 0.5]$. The pair (u, λ) corresponds to a classical solution of the saddle point system away from the origin, but $\|u\|_1 = \infty$. Therefore, this example is not covered by our theoretical results, but we include the example to illustrate additional effects. The Dirichlet boundary conditions are obtained from the analytical solution, while the initial value for λ is $\lambda_0 = 0$ everywhere except in $(0, 0)$, where $\lambda = 1$. The initial value for u is shown in Figure 1(a). The computed solution is shown in Figure 1(b). The numerical errors are given in Table 4. The errors indicate that both u_h and λ_h converge linearly to the solution when measured in L^2. It is interesting to observe that we get convergence for $\|u - u_h\|_0$ and $\|\lambda - \lambda_{(0)}\|_0$ even without mesh refinement around the singularity.

For this example, the Newton solvers are unstable and do not always converge. Thus, we have used the following iteration to produce the initial value for the Newton solvers:

\[
\begin{pmatrix}
-L_h & \text{diag}(u_n) \\
\text{diag}(u_n)^\top & 0
\end{pmatrix}
\begin{pmatrix}
u_{n+1} - u_n \\
\lambda_{n+1} - \lambda_n
\end{pmatrix} =
\begin{pmatrix}L_h u_n - \lambda_n u_n \\
(1 - |u_n|^2)/2\end{pmatrix}.
\]
Fig. 1. Plot of the initial solutions and the computed solutions. (a) The first initial solution. (b) The solution for (a). (c) The second initial solution. (d) The solution for (c).

Table 4
Errors with respect to h for the singular problem.

<table>
<thead>
<tr>
<th>h</th>
<th>2^{-3}</th>
<th>2^{-4}</th>
<th>2^{-5}</th>
<th>2^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|u - u_h|_0$</td>
<td>2.2e-1</td>
<td>1.3e-1</td>
<td>7.4e-2</td>
<td>4.0e-2</td>
</tr>
<tr>
<td>$|\lambda - \lambda_h|_0$</td>
<td>8.3e-1</td>
<td>4.1e-1</td>
<td>2.1e-1</td>
<td>1.0e-1</td>
</tr>
</tbody>
</table>

Table 5
Convergence for the inexact Newton solver for the singular problem.

<table>
<thead>
<tr>
<th>ϵ_1</th>
<th>ϵ_5</th>
<th>ϵ_{10}</th>
<th>ϵ_{11}</th>
<th>ϵ_{12}</th>
<th>ϵ_{13}</th>
<th>ϵ_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1e+1</td>
<td>6.4e-1</td>
<td>1.1e-1</td>
<td>8.1e-2</td>
<td>9.7e-4</td>
<td>2.4e-7</td>
<td>1.2e-8</td>
</tr>
</tbody>
</table>

Compared with (7.3), the matrix A_n has been dropped. This iterative scheme is globally convergent and is normally slower than the Newton solvers. Its convergence properties will be analyzed and discussed elsewhere. We do ten iterations of (7.5), and the inexact Newton solver is then turned on. The results are shown in Table 5 for $h = 2^{-4}$, where it is clear that we have quadratic convergence in the last iterations.

For the smooth problem tested in section 7.1, it seems that the iterative solution always converges to the same solution no matter what kind of initial solution we use. For the problem here, we have noticed that the saddle point problem may have
multiple solutions. With another initial solution, as shown in Figure 1(c), we obtain another solution, which is shown in Figure 1(d).

Acknowledgment. The authors are grateful to Kent Mardal who has supplied the numerical experiments for this work.

REFERENCES

