<table>
<thead>
<tr>
<th>Title</th>
<th>Room-temperature luminescence of excitons in ZnO/(Mg,Zn)O multiple-quantum wells on lattice-matched substrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Makino, T.; Chia, C. H.; Tuan, N. T.; Sun, Handong; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Tamura, K.; Koinuma, H.</td>
</tr>
<tr>
<td>Date</td>
<td>2000</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6145</td>
</tr>
</tbody>
</table>
Room-temperature luminescence of excitons in ZnO/(Mg,Zn)O multiple quantum wells on lattice-matched substrates

T. Makino, a) C. H. Chia, b) Nguen T. Tuan, H. D. Sun, and Y. Segawa
Photodynamics Research Center, RIKEN (Institute of Physical and Chemical Research), Sendai 980-0845, Japan
M. Kawasaki, A. Onoto, and K. Tamura
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Japan
H. Koinuma c)
Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

(Received 10 April 2000; accepted for publication 20 June 2000)

We report on the optical properties of ZnO/(Mg,Zn)O multiple quantum wells (MQWs) on lattice-matched ScAlMgO4 substrates fabricated by laser molecular-beam epitaxy. As the well layer thickness decreased down to 7 Å, the photoluminescence (PL) and absorption peaks showed a systematic blueshift, consistent with the quantum-size effect. Moreover, a bright PL of free excitons could be observed even at room temperature. As a result, the PL could be tuned in the energy range of 3.3–3.6 eV by choosing the appropriate barrier height and well layer thickness. The widest tunability on the room-temperature luminescence of the excitons could be attained on the basis of the ZnO quantum structure. These favorable properties could not be attained in the MQWs on lattice-mismatched sapphire substrates.

Recently, ZnO and related oxides are attracting much attention as promising candidates for optoelectronic applications in visible and ultraviolet (UV) regions. A large exciton binding energy [EBE, 59 meV] permits excitonic recombination even at room temperature (RT). In fact, RT lasing in ZnO epilayers on sapphire(0001) substrates has been experimentally demonstrated. A lower pumping threshold can be expected, in principle, if an exciton-related recombination rather than an electron-hole plasma recombination is used. A representative example of the latter is an InGaAsN-based laser diode. The quantum-well approach is effective toward the goal of a current-injection laser.

We previously fabricated ZnO/(Mg,Zn)O multiple quantum wells (MQWs) on sapphire substrates with negligibly small interface diffusion of Mg. Excitonic photoluminescence (PL) accompanied by the quantum confinement effect was clearly observed at 4.2 K. These MQWs, however, showed the following drawbacks that are attributable to the rough interface due to lattice-mismatched substrates (in-plane, 18%): (1) controllability of layer thickness is not sufficient to realize the proper quantum confinement effect, and (2) PL efficiency is not high enough to enable observation of the exciton emission at RT. These problems must be overcome for an optoelectrical device to be operatable at RT. We used ScAlMgO4 (SCAM) with (0001) orientation as a substrate, the lattice constant of which matches that of ZnO with 0.08%. Epitaxial ZnO and MgZn1−xO films showed significantly improved structural7 and optical8 properties.

In this letter, we describe the optical properties of MQWs grown on lattice-matched substrates. The problem of the undesirable properties, which was unavoidable when the sapphire substrate was used, could be eliminated. Such a breakthrough is favorable from the viewpoint of practical application of ZnO devices.

MQWs of ten period, [ZnO(Lw)/Mg0.12Zn0.88O]10 and [ZnO(Lw)/Mg0.27Zn0.73O]10, were fabricated by laser molecular-beam epitaxy on SCAM substrates. The films had a c-axis orientation. The well layer thickness (Lw) was varied from 6.9 to 46.5 Å, and the thickness of the barrier layer was approximately 50 Å, both of which were precisely determined from x-ray diffraction analysis. The thicknesses, indicated below in units of angstroms, are the averaged ones of ten well layers, while those in units of unit cell height (L = 5.2 Å) were rounded so as to be integers of the height of the ZnO charge neutral molecular layers (2.6 Å). All the layer thicknesses were set as integer of molecular layers by prescribed deposition time. The samples did not have buffer layers, unlike those on sapphire. The Mg content of x = 0.12 is slightly less than the solubility limit (x = 0.15) of this alloy film, while the content of x = 0.27 is far above it. The band gap energies of MgZn1−xO were summarized in Ref. 10. A combinatorial masking method was adopted. Excimer laser pulses were impinged to MgZn1−xO targets (99.999%). The films were grown at 600 °C in 1 × 10−5 Torr of pure oxygen (99.9999%). The SCAM is transparent in the spectral region of interest. The sample was kept in a cryostat. The PL was excited by a continuous wave (cw) He–Cd laser (325 nm) and was monitored using a monochromator with a charge-coupled device. Absorption measurements were carried out using a xenon lamp. Spectral resolution was 0.4 nm.

Figure 1 shows PL and absorption spectra in
ZnO/Mg0.12Zn0.88O MQWs on SCAM substrates measured at 5 K with \(L_w \) of 17.5 and 6.91 Å. Absorption energy of barrier layers is shown by a horizontal arrow. Spectra in a 500-Å-thick ZnO film are also shown. "A, B" indicates A- and B-exciton absorption bands, "I" shows PL of a bound exciton state, "B+LO, B+2LO, and B+3LO" correspond to exciton-phonon complex transitions, "n = 1" shows the lowest excitonic absorption of the well layers, and "n = 2" means the excited states of the exciton or higher interband (subband) transitions.

![Normalized PL Intensity vs Photon Energy](image)

FIG. 1. PL and absorption spectra in [ZnO/\(L_w \)/Mg0.12Zn0.88O]_{10} MQWs measured at 5 K for well widths (\(L_w \) = 17.5 and 6.91 Å). Absorption energy of barrier layers is shown by a horizontal arrow. Spectra in a 500-Å-thick ZnO film are also shown. "A, B" indicates A- and B-exciton absorption bands, "I" shows PL of a bound exciton state, "B+LO, B+2LO, and B+3LO" correspond to exciton-phonon complex transitions, "n = 1" shows the lowest excitonic absorption of the well layers, and "n = 2" means the excited states of the exciton or higher interband (subband) transitions.

ZnO/Mg0.12Zn0.88O MQWs on SCAM substrates measured at 5 K with \(L_w \) of 17.5 and 6.91 Å. The PL and absorption spectra in a 500-Å-thick ZnO epilayer on SCAM were included for comparison. Both the PL and absorption peaks shifted towards the higher energy side as \(L_w \) decreased. This shift was due to the quantum confinement effect. The exciton Bohr radius is \(\approx 18 \) Å. The absorption peaks (\(n = 1 \)) arise from the lowest excitonic states of well layers. The peak energies of PL were constantly located on the lower energy side of those of absorption peaks.

Figures 2(b)–2(c) show the well width dependence of the peak energies of PL (closed circles) and absorption (open squares), respectively, in [ZnO/Mg0.12Zn0.88O]_{10} and [ZnO/Mg0.27Zn0.73O]_{10} on SCAM substrates. The lowest transition energy of excitons (open triangles) formed with confined electrons and holes was calculated by adopting the model of one-dimensional, finite periodic square-well potential, proposed by Gol’dman and Krivchikov. The EBE (59 meV) is assumed to be independent of \(L_w \). The band discontinuity determined in Ref. 6 and the effective masses of an electron (0.28 \(m_0 \)) and a hole (1.8 \(m_0 \)) were used. Here, \(m_0 \) is the free electron mass. These offsets and optical transition process on [ZnO/Mg0.12Zn0.88O]_{10} are shown in Fig. 2(a). Figure 2(d) shows peak energies of PL excitation spectra (squares) plotted against \(L_w \) on sapphire substrates.

Since the energies of absorption maxima are relatively close to calculated values, these correspond to the lowest excitonic transition related to the lowest interband (subband) transition. The exciton absorption energy shifted to a higher energy as the barrier height increased. This result can be explained by considering the fact that confined potential is deeper for a higher barrier. This tendency was qualitatively reproduced by the calculation. In the case of MQWs on sapphire substrates, it was reported that the concentration of \(x = 0.20 \) is close to the limit to obtain clear electronic structures at the heterointerfaces. However, MQWs having \(x = 0.27 \) barrier layers on SCAM can still show clear structures.

![Diagram of conduction and valence bands](image)

FIG. 2. (a) Diagram of conduction and valence bands between barrier and well layers in [ZnO/Mg0.12Zn0.88O] MQW (see Ref. 6). The upward arrow shows the lowest interband transition. (b) Peak energies of PL (circles) and absorption (squares) are plotted against \(L_w \) in [ZnO/Mg0.27Zn0.73O]_{10} on SCAM substrates. Calculated results (triangles) of the interband transition energy including the excitonic effect are also shown. (c) Similar except that the Mg content was \(\approx 12 \)%. (d) Similar except that the substrate was sapphire. The Mg content was \(\approx 15 \). Energies of PL excitation spectra (squares) are plotted instead of those of absorption, due to the presence of the 100-nm-thick ZnO buffer layers. Note, the peak energies of PL excitation spectra coincide with those of absorption. A solid curve is shown as a visual guide.
FIG. 3. Temperature dependence of PL and absorption spectra in [ZnO(23.5 Å)/Mg0.27Zn0.73O]10 on SCAM substrates. The upper two spectra were multiplied by the indicated values for normalization.

that there is no limitation with respect to the \(L_w \) if SCAM is used as a substrate, which is due to the improved surface flatness at the heterointerfaces.

Figure 3 shows the temperature dependence of PL and absorption spectra in the \([\text{ZnO}(23.5\,\text{Å})/\text{Mg}_{0.27}\text{Zn}_{0.73}\text{O}]_{10}\) on SCAM substrates with \(L_w \) of 23.5 Å. Since the PL peak at RT is located in the proximity of the exciton absorption band, it can be concluded that excitonic PL definitely persists up to RT. We confirmed such PL at RT for all 27 samples having various barrier heights and \(L_w \). Excitonic PL in MQWs on sapphire is thermally quenched at 150 K. This is another improvement made possible by the lattice-matching condition. Time-resolved PL measurements showed that the non-radiative decay rates of excitons in MQWs on SCAM substrates are less than those in samples on sapphire, which is due to the high crystallinity.

In summary, the adoption of lattice-matched SCAM substrates significantly improved the optical properties of ZnO MQWs. First, such a matching condition enables us to attain high controllability of layer thickness. As a result, the quantum-confinement effect for the exciton energy could be confirmed experimentally if the well width is equal to 1.5 unit cells or more. Second, a bright excitonic PL was confirmed at RT. Such high-quality MQWs opens up numerous possibilities for UV optoelectric devices.

This work was partially supported by the Proposal-Based Program of NEDO (Grant No. 99S12010) and by the Special Postdoctoral Research Program of RIKEN, Japan.