<table>
<thead>
<tr>
<th>Title</th>
<th>Interleukin-6 and neural stem cells: more than gliogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Omedul Islam; Gong, Xian Di; Rose-John, Stefan; Heese, Klaus</td>
</tr>
<tr>
<td>Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6200</td>
</tr>
<tr>
<td>Rights</td>
<td>This paper was published by Molecular biology of the cell, American Society for Cell Biology. The officially published version can be found at the following URL: [http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E08-05-0463]. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Interleukin-6 and Neural Stem Cells: More Than Gliogenesis

Omedul Islam,* Xiandi Gong,* Stefan Rose-John,† and Klaus Heese*

*Department of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore; and †Department of Biochemistry, Christian-Albrechts University, D-24098 Kiel, Germany

Submitted May 7, 2008; Revised October 14, 2008; Accepted October 22, 2008

Monitoring Editor: Carl-Henrik Heldin

Besides its wide range of action as a proinflammatory cytokine in the immune system, interleukin-6 (IL-6) has also attracted much attention due to its influence on the nervous system. In the present study we show that the designer fusion protein H-IL-6, consisting of IL-6 and its specific receptor IL-6R-α, but not IL-6 alone, mediates both neuro- as well as gliogenesis. Using immunocytochemistry, Western blot, and patch-clamp recording, we demonstrate that H-IL-6 induces the differentiation of neural stem cells (NSCs) specifically into glutamate-responsive neurons and two morphological gliogenesis. Using immunocytochemistry, Western blot, and patch-clamp recording, we demonstrate that H-IL-6 induces the differentiation of neural stem cells (NSCs) specifically into glutamate-responsive neurons and two morphological gliogenesis. H-IL-6–activated neurogenesis seems to be induced by the MAPK/CREB (mitogen-activated protein kinase/cAMP response element-binding protein) cascade, whereas gliogenesis is mediated via the STAT-3 (signal transducers and activators of transcription protein-3) signaling pathway. Our finding that IL-6 mediates both processes depending on its specific soluble receptor sIL-6R-α has implications for the potential treatment of neurodegenerative diseases.

INTRODUCTION

In recent years it has been noted that the adult brain has “self-repair-capacity” to replace lost neurons in several selected regions of the CNS such as the olfactory bulb, hippocampus, adult human subependymal zone, and the cortex. Active neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus, and in the subventricular zone (SVZ) of the lateral ventricles (Kempermann and Gage, 1999; Gage, 2000; Okano, 2002). Neural stem cells (NSCs) within these neurogenic regions can self-renew, proliferate, and differentiate into neurons or glia, providing a reservoir for replacement of cells lost during normal cell turnover and after brain injury. Newborn neurons and glia then migrate to appropriate regions in the brain and integrate into neuronal circuits (Brazeal and Rao, 2004; Campos, 2004; Ming and Song, 2005; Reynolds and Rietze, 2005). Recent findings show that impairment of neurogenesis is sufficient to deteriorate learning and memory, hinting that abnormalities in the proliferation and differentiation of NSCs could play a role in the pathogenesis of cognitive disorders such as Alzheimer’s disease (Shors, 2004). The question facing modern medicine is how best to use NSCs to produce functional recovery in neurodegenerative disorders in the aging brain (Arvidsson et al., 2002; Sugaya, 2005; Tanne, 2005).

The interleukin-6 (IL-6) receptor family is comprised of multisubunit receptors associated with a common receptor subunit, the transmembrane protein gp130 (Taga and Kishimoto, 1997; Heinrich et al., 2003). Natural soluble forms of those integral-membrane receptors have been described for numerous cytokines (Jones and Rose-John, 2002). Although most of them act as antagonists by competing for their ligands with the membrane bound receptors, the soluble IL-6R (sIL-6R), which is generated by limited proteolysis (shedding) or alternative splicing, behaves as an agonist (Jones and Rose-John, 2002; Rose-John and Neurath, 2004). Thus, the complex of sIL-6R bound to IL-6 is able to activate target cells that express gp130 on their cell surface but lack membrane-bound IL-6R (gp80)—a process called trans-signaling (Rose-John and Neurath, 2004; Jones et al., 2005). It is worth noting that all cells in the body express gp130, whereas only few cells express IL-6R. Cells responding to IL-6 during inflammatory states do not express IL-6R. Interestingly, the gp130 receptor subunit also occurs as a soluble protein, which is believed to have antagonistic activity (Rose-John et al., 2006). These findings designate the IL-6R system as an interesting target for the treatment of various inflammatory and cancer diseases (Jones et al., 2001; Scheller and Rose-John, 2006; Rose-John et al., 2007).

Although IL-6 has been found originally to serve as a major inducer of immune and inflammatory responses (Rose-John et al., 2006), accumulating evidence point to a crucial role of IL-6 within the CNS. Thus, increasing attention has been focused on the functional role of the hematopoietic cytokines belonging to the IL-6R family in the CNS. For instance, IL-6 promotes the differentiation of cortical precursor cells into oligodendrocytes and astrocytes (Kahn and De Vellis, 1994; Wagner, 1996; Bonni et al., 1997; Gruol and Nelson, 1997; Rajan and McKay 1998; Nakanishi et al., 2007), activates adult astrocytes (Campbell et al., 1993), and also functions as a neurotrophic and differentiation factor for neurons of the central and peripheral nervous system (Satoh et al., 1988; Gadient and Otten, 1997; März et al., 1997, 1998; Schäfer et al., 1999; Thier et al., 1999).

To further clarify the specific role of IL-6 and its specific IL-6R on NSCs’ phenotype change and differentiation, we...
used a highly active fusion protein of IL-6 and sIL-6R designated as Hyper-IL-6 (H-IL-6) and compared its activity to that of IL-6 alone (Jones and Rose-John, 2002). We found that H-IL-6 induces NSCs to differentiate specifically into glutamate-responsive neurons, oligodendrocytes as well as into phenotypically different glia types and that this effect is strongly dependent on the specific sIL-6R. Our results may have implications for the combined use of IL-6 and its specific soluble receptor sIL-6R-α for the treatment of neurodegenerative diseases.

MATERIALS AND METHODS

Reagents

Unless indicated, all reagents used for biochemical methods were purchased from Sigma–Aldrich (Sigma-Aldrich, Milwaukie, WI). Glutamate (Glu, glutamic acid), NMDA (N-methyl-D-aspartate), (R)-AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, AMPA-receptor agonist), and the selective noncompetitive AMPA-receptor inhibitor GYKI 52466 hydrochloride were from Tocris Bioscience (Bristol, United Kingdom), STAT-3 (Signal Transducers and Activators of Transcription) inhibitors (cucurbitacin-I, Cucurbita sativa L., a dual inhibitor of phosphorylated JAK-2 and phosphorylated STAT-3 (CaliBiochem, San Diego, CA), and a selective inhibitor of STAT-3 (a cell-permeable inhibitor peptide, a STAT-3–SH2-domain–binding phosphopeptide, 40 KD) that acts as a selective inhibitor of STAT-3 signaling. It lowers the DNA-binding activity of STAT-3 by forming an inactive STAT-3–peptide complex and reduces the levels of STAT-3–STAT-3 dimers that can bind DNA with no effects on STAT-3–independent Ras/MAPK signaling (CaliBiochem).

For Western blotting, anti-ERK (extracellular-regulated kinase, 1:500, rabbit polyclonal; Chemicon, Temecula, CA), anti-pERK (phosphorylated ERK, 1:200, rabbit polyclonal; Santa Cruz Biotechnology, Santa Cruz, CA), donkey/sheep polyclonal anti-goat/rabbit/mouse IgG (horseradish peroxidase [HRP]-coupled, 1:3000; Amersham, Piscataway, NJ), anti-α-tubulin (1:1000, mouse monoclonal; Santa Cruz), anti-nestin (1:2000, mouse monoclonal; Chemicon), anti-GAP (glial fibrillary acidic protein, 1:2000, monoclonal; Chemicon), anti-TRKA (tropomyosin-related kinase A receptor, 1:1000, rabbit polyclonal; Santa Cruz), anti-α-MAP2 (microtubule-associated protein, 1:5000, mouse monoclonal; Santa Cruz), anti-p53 (1:2000, rabbit polyclonal; Cell Signaling), anti-phospho-p53 (1:500, rabbit polyclonal; Santa Cruz Biotechnology, Santa Cruz, CA), donkey/goat IgG; BabCO, Richmond, CA), anti-gp130 (1:1000, rabbit polyclonal; Santa Cruz Biotechnology, Santa Cruz, CA), and anti-nestin (1:500, mouse monoclonal; Chemicon). GAD-67 (1:500, mouse monoclonal; Chemicon), anti-MBP (1:200, rabbit polyclonal; Group, Chicago, IL), anti-GLU-V (1:500, mouse monoclonal; Chemicon), anti-IL-6R-IgG; BabCO, Richmond, CA), anti-GLU-V (1:500, mouse monoclonal; Chemicon), and anti-nestin (1:500, mouse-monoclonal; Chemicon).

For Immunocytochemistry, anti-CD45RB (1:1000, rabbit polyclonal; Calbiochem), anti-MAP2 (1:200, mouse monoclonal; Santa Cruz), anti-p53 (1:1000, rabbit polyclonal; Cell Signaling), anti-phospho-p53 (1:500, rabbit polyclonal; Cell Signaling), Anti-phospho-TRKA (1:1000, rabbit polyclonal; Cell Signaling), anti-β-III-tubulin (anti-TUJ-1, neuron-specific β-III-tubulin antibody, 1:2500, mouse monoclonal IgG; BabCO, Richmond, CA), anti-gp130 (1:1000, rabbit polyclonal; Santa Cruz Biotechnology, Santa Cruz, CA), anti-IL-6R-IgG; BabCO, Richmond, CA), anti-GLU-V (1:500, mouse monoclonal; Chemicon), and anti-nestin (1:500, mouse-monoclonal; Chemicon).

Growth Factors

For Western blotting: anti-ERK (extracellular-regulated kinase, 1:500, rabbit polyclonal; Chemicon, Temecula, CA), anti-pERK (phosphorylated ERK, 1:200, rabbit polyclonal; Santa Cruz Biotechnology, Santa Cruz, CA), donkey/sheep polyclonal anti-goat/rabbit/mouse IgG (horseradish peroxidase [HRP]-coupled, 1:3000; Amersham, Piscataway, NJ), anti-α-tubulin (1:1000, mouse monoclonal; Santa Cruz), anti-nestin (1:2000, mouse monoclonal; Chemicon), anti-GAP (glial fibrillary acidic protein, 1:2000, monoclonal; Chemicon), anti-TRKA (tropomyosin-related kinase A receptor, 1:1000, rabbit polyclonal; Santa Cruz), anti-α-MAP2 (microtubule-associated protein, 1:5000, mouse monoclonal; Santa Cruz), anti-IL-6R-IgG; BabCO, Richmond, CA), anti-gp130 (1:1000, rabbit polyclonal; Santa Cruz Biotechnology, Santa Cruz, CA), donkey/goat IgG; BabCO, Richmond, CA), anti-gp130 (1:1000, rabbit polyclonal; Santa Cruz Biotechnology, Santa Cruz, CA), and anti-nestin (1:500, mouse-monoclonal; Chemicon).

For Immunocytochemistry, anti-CD45RB (1:1000, rabbit polyclonal; Calbiochem), anti-β-III-tubulin (anti-TUJ-1, 1:500, mouse monoclonal IgG; BabCO), goat serum (Vector Laboratories, Burlingame, CA) and anti-MAP2 (1:200, mouse monoclonal; Chemicon), anti-STAT3 (1:500, rabbit polyclonal; Cell Signaling), anti-ERK (extracellular-regulated kinase, 1:500, rabbit polyclonal; Santa Cruz), and anti-phospho-ERK (1:200, rabbit polyclonal; Cell Signaling).

NSC Culture

The advanced pregnant female (C57BL/6J) was anesthetized, and embryonic day 14 (E14) fetuses were removed one at a time. Fetuses were killed by rapid decapitation, followed by immediate removal of the brain and its surrounding membranes. Primary cultures were established from the forebrains (SVZ) of the fetuses. Dissociated embryonic tissue was digested with 0.5% trypsin (Invitrogen, Singapore) for 10 min, dissociated mechanically, and then passed through a 70-μm nylon mesh (cell strainer, BD Falcon, BD Biosciences, Bedford, MA). After two washing steps with DMEM-F12 (1:1; Invitrogen, Invitro- gen), cells were exposed to the mitogen EGF in serum-free conditions. Obtained were the mitogen EGF (20 ng/ml) and Hyper-IL-6 (100 ng/ml) with 15 mM HEPES-buffer solution (Hyclone Laboratories, Logan, UT) and antibiotics supplemented with 2% supplements (1:50; Invitrogen) in the presence of EGF (20 ng/ml) for three passages (3P). Cells were cultured in noncoated Nunc-Thermo Fischer Scientific, Roskilde, Denmark) flasks at clonal density (2 × 103 cells/ml) and the media was changed every 3 to 4 d. H-IL-6 or IL-6 was applied as described in the text. In some cases NSCs were also grown with EGF, EGF and BDNF (100 ng/ml), EGF and NGF (100 ng/ml), or EGF and NT-3 (100 ng/ml) for 3P as indicated in the text.

NSC Differentiation

EGF-derived neurospheres, from E14 cortex tissue, were cultured for 3P and thereafter were differentiated by seeding mechanically dissociated (single cell suspension) NSCs onto poly-l-lysine (PLL)-coated glass coverslips in four-well plates at a density of 5 × 103 cells/ml in EGF-free media (NB; Invitrogen, Invitrogen) containing 2 mM glutamax, 2 mM gluta mine, and B-27 supplements, and H-IL-6 (100 ng/ml) or IL-6 (100 ng/ml) where applicable. Cells were incubated in a 37°C incubator for 5 d to observe the differentiation property.

Cell Proliferation Assays

The innovative CellTiter-Glo Luminescent Cell Viability Assay (Promega, Madison, WI; Heese et al., 2004; Yokota et al., 2006) was used for the cell proliferation assays. This application generates a "glow" luminescent signal based on quantitation of the ATP present from viable cells, which signals the presence of metabolically active cells. The homogeneous "add-mix-measure" format results in cell lysis and generation of a luminescent signal (that relies on the properties of a proprietary thermostable luciferase) proportional to the number of cells present in culture. Briefly, according to the manufacturer's protocol, NSCs were cultured for 3P and thereafter were dissociated and plated at a density of 20,000 cells/well on an opaque-walled 96-well plate with 100 μl complete media (as mentioned above), and H-IL-6 or IL-6 were added at different concentrations (0, 60, 120, 240, and 480 ng/ml) for 72 h. Controls were grown with EGF (20 ng/ml) only or with EGF (20 ng/ml) plus H-IL-6 (100 ng/ml), and then the EBDU-labeled NSCs were stained with FITC-conjugated anti-BrdU antibody (1:500) with the reagents provided in accordance to the manufacturer's protocol, and finally 10,000 cells were analyzed with BD FACSCalibur (BD Biosciences) using FL1 detector for BrdU-positive cells and FL3 detector for 7-aminoactionmycin D (7-AAD)-positive cells to determine the percentage of proliferating cells (BrdU and 7-AAD-positive) among the total cell population analyzed. Results shown as relative proliferation represent experiments done four times, each performed in triplicates.

Immunocytochemistry

NSCs were differentiated with neurobasal (NB) medium for 5 d and thereafter fixed with 4% paraformaldehyde for 20 min at room temperature (RT). Cells were rinsed three times with PBS (phosphate-buffered saline) and blocked for 1 h in PBS containing 0.1% Triton X-100 (USB, Cleveland, OH) and 10% normal goat serum (Vector Laboratories, Burlingame, CA) before incubation with the primary antibodies overnight at 4°C. After washing three...
times these primary antibodies were followed by secondary antibodies labeled with FITC Alexa Fluor 568 (goat polyclonal anti-rabbit 1:400, or Alexa Fluor 488 goat monoclonal anti-mouse 1:400, Molecular Probes, Rochester, MN), v. 1. After washing three times the coverslips were mounted on glass slides using DAPI/Alkaline phosphatase (Chemicon) and analyzed with a Carl Zeiss Live imaging microscope (Axiovert 200; Carl Zeiss, Göttingen, Germany).

H-IL-6/IL-6 Stimulation for H-IL-6/IL-6-mediated Signaling Pathway Analysis

EGF-grown NSCs (for 3P) were washed with fresh DMEM/F-12 media without supplementation to remove all traces of EGF and cultured in three different 25-cm² flasks of EGF-free NSCs media (5 ml) supplemented with B27 for 5 h. H-IL-6 (100 ng/ml) or IL-6 (100 ng/ml) was then added to the respective flask (nothing was added into the control flask) and incubated for 10 min at 37°C. Before the reaction was stopped with ice-cold PBS (15 ml), and washed twice with ice-cold PBS. H-IL-6 and IL-6—stimulated as well as control cells were then lysed and used for protein expression analysis by SDS-PAGE and Western blot with respective antibodies.

Cell Lysis and Protein Extraction

For washing, adherent cells were resuspended using a disposable cell scraper (Greiner Bio-One GmbH, Frickenhausen, Germany) and collected into 15 ml centrifuge tubes (BD Falcon, BD Biosciences), while floating neurospheres were collected and extracted into 15 ml centrifuge tubes. Cells were washed twice with Ca²⁺/Mg²⁺-free PBS (−/+/-) via centrifugation, and the supernatant was removed after the last wash. Lysis buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 40 mM NaF, 5 mM EDTA, 1% Triton X-100, 1 mM sodium orthovanadate, 1% (vol/vol) Nonidet P-40, 0.1% (wt/vol) sodium deoxycholate, 0.1% (wt/vol) SDS, 1 mM phenylmethylsulfonyl fluoride, and 10 ng/ml aprotinin) was added to each respective centrifuge tube followed by 5 min of incubation on ice. Lysed cells were centrifuged at 10,000 × g at 4°C for 10 min. The supernatant containing the protein extract was either immediately used for further analysis or stored at −80°C.

For the subcellular protein isolation, the cell lysates were prepared according to the manufacturer's protocol using Qproteome Cell Compartment kit (Qiagen, Hilden, Germany) and analyzed by Western blot. Briefly, NSCs were collected and washed three times with ice-cold PBS followed by protein extraction using the CE1 buffer to obtain the cytosolic proteins. Thereafter, the pellets were extracted stepwise with CE2 buffer and CE3 buffer, which gives membrane proteins and nuclear proteins, respectively. Finally, the pellets were suspended in CE4 buffer to get the cytoskeletal proteins. The various fractions were applied for SDS-PAGE analysis.

SDS-PAGE and Western Blot Analysis

Twenty micrograms of cell lysates were separated using a disposable cell scraper (Greiner Bio-One GmbH, Frickenhausen, Germany) and collected into 15 ml centrifuge tubes (BD Falcon, BD Biosciences), while floating neurospheres were collected and extracted into 15 ml centrifuge tubes. Cells were washed twice with Ca²⁺/Mg²⁺-free PBS (−/+/-) via centrifugation, and the supernatant was removed after the last wash. Lysis buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 40 mM NaF, 5 mM EDTA, 1% Triton X-100, 1 mM sodium orthovanadate, 1% (vol/vol) Nonidet P-40, 0.1% (wt/vol) sodium deoxycholate, 0.1% (wt/vol) SDS, 1 mM phenylmethylsulfonyl fluoride, and 10 ng/ml aprotinin) was added to each respective centrifuge tube followed by 5 min of incubation on ice. Lysed cells were centrifuged at 10,000 × g at 4°C for 10 min. The supernatant containing the protein extract was either immediately used for further analysis or stored at −80°C.

For the subcellular protein isolation, the cell lysates were prepared according to the manufacturer's protocol using Qproteome Cell Compartment kit (Qiagen, Hilden, Germany) and analyzed by Western blot. Briefly, NSCs were collected and washed three times with ice-cold PBS followed by protein extraction using the CE1 buffer to obtain the cytosolic proteins. Thereafter, the pellets were extracted stepwise with CE2 buffer and CE3 buffer, which gives membrane proteins and nuclear proteins, respectively. Finally, the pellets were suspended in CE4 buffer to get the cytoskeletal proteins. The various fractions were applied for SDS-PAGE analysis.

Electrophysiology

Patch-clamp recordings were made using the whole-cell recording configuration of the patch-clamp technique. The extracellular solution contained 140 mM NaCl, 10 mM HEPES, 1 mM NaHCO₃, 0.5 mM Na₂HPO₄, 5 mM KCl, 0.5 mM KH₂PO₄, 2 mM CaCl₂, and 10 mM glucose; the intracellular solution (pipette) contained 130 mM CsCl, 10 mM HEPES, 10 mM tetraethylammonium chloride (TEA-Cl), 1 mM CaCl₂, 2 mM MgCl₂, and 2 mM EGTA. The extracellular solution was adjusted to pH 7.4 with 1 N NaOH, and the intracellular solution was adjusted to pH 7.2 with 1 N CsCl. Unless stated otherwise, all chemicals were from Sigma-Aldrich. Membrane potential was held at −70 mV. The current-voltage (I-V) relationships were constructed using depolarizing voltage-ramp protocols. Briefly, currents activated by NMDA or AMPA were elicited with voltage-ramp protocol from −100 to 60 mV within 3000 ms. Current amplitude was at the beginning (20 ms) and end (480 ms). The 20-ms time point was selected to ensure that the cell membrane capacitive current did not contribute to the current measured. Currents were filtered at 1 kHz using an eight-pole Bessel filter (Frequency Devices, Ottawa, IL), amplified using an Axopatch 200B amplifier (Axon Instruments, Foster City, CA), digitized at 5 kHz using a DigiData 1322A interface and analyzed using PC-LAB 9.2 (Axon Instruments).

Statistical Evaluation

The data obtained in this investigation are illustrated as mean ± SD. Differences among groups were established using an unpaired Student’s t-test (two-tail). Differences in relative cell proliferation were also assessed by a two-way ANOVA followed by a post hoc t test with Bonferroni correction. To be considered statistically significant, we required a probability value to be at least < 0.05 (95% confidence limit).

RESULTS

IL-6 Mediates Neural Stem Cell Differentiation Depending on Its Soluble Receptor sIL-6R

To demonstrate that IL-6 mediates neural stem cell differentiation depending on its soluble receptor sIL-6R, we initially determined the expression of the components of the entire IL-6R system on neurospheres. Spheres were cultured for 3P with EGF only or with EGF plus H-IL-6 or with IL-6. Although the gp130 receptor subunit was up-regulated in the presence of IL-6 only, the specific IL-6R could not be detected (though NSCs may express very low levels), thereby explaining why NSCs do not respond to IL-6 but do react upon activation by H-IL-6 (Figure 1A). Accordingly, the stem cell marker nestin was significantly reduced upon H-IL-6 stimulation but only slightly down-regulated when NSCs were grown with EGF plus IL-6 (Figure 1B, C and D). Surprisingly, we observed a very strong induction of the neuronal marker TUJ-1 (neuron-specific β-III-tubulin) by H-IL-6. We also tested the glia/progenitor-marker GFAP as well as the oligodendrocyte-markers MBP and KROX20 and found that H-IL-6 mediated the differentiation of NSCs into all the different glia cells as indicated by an increased expression of GFAP, MBP, and KROX20. To test whether the reduction in nestin was due to differentiation or rather due to cell death, we also investigated the potential induction of apoptosis. However, neither the total caspase-3 expression nor its cleaved product (activated caspase-3) was altered. In addition, an annexin V-FITC Apoptosis Detection Kit (BD Biosciences) was used to assess apoptosis within the NSC cultures, but no significant apoptotic signs could be detected (data not shown), thus reemphasizing the fact that H-IL-6 is mediating the differentiation of NSCs independent of apoptotic mechanisms (Figure 1B). As shown in the Figure 1D and E, the effect of H-IL-6 on the down-regulation of nestin was dose-dependent.

It has also to be noted that H-IL-6 is able to override the action of the strong mitogen EGF, thereby allowing the NSCs to enter the differentiation pathway. In contrast, the classical neurotransphins (NGF, BDNF, or NT-3) are unable to trigger differentiation of multipotent NSCs as long as EGF is present—almost no significant changes could be observed for any of the differentiation markers tested (TUJ-1, GFAP; Figure 1F and G).

The differentiation effect of H-IL-6 was confirmed by immunocytochemistry. For this purpose NSCs were grown for 3P with (only) EGF before differentiation was induced in EGF-free NB-media (with B27 supplement) for 5 d with or without H-IL-6. NSCs showed significant more...
neuronal (TUJ-1–positive) and glia (GFAP- and MBP-positive) cells if differentiated in the presence of H-IL-6 (Figure 2A).

H-IL-6 Differentiates Nestin-positive NSCs
To check whether H-IL-6 was responsible for the survival of neurons and glia or rather initiated the differentiation of nestin-positive cells, we counted the number of nestin-positive cells and found that those were significantly reduced if NSCs were grown in the presence of H-IL-6 for 3P, thus confirming the TUJ-1/GFAP-immunocytochemical and Western blot results obtained in Figures 1 and 2A (Figure 2B).

Additional proliferation analyses revealed that H-IL-6 indeed induced the differentiation of NSCs, thereby explaining why the nestin-positive cells were down-regulated. Although the effect of IL-6 on NSCs proliferation was marginal, H-IL-6 significantly inhibited NSCs proliferation in a dose-dependent manner (Figure 2, C and D).

H-IL-6 Differentiates NSCs into Neurons and Two Morphological Distinctive Astroglia Cell Types
We noted that H-IL-6 not only induced the differentiation of NSCs into GFAP-positive astrocytes but was also responsible for the formation of at least two morphological distinctive astroglia types as shown in Figure 2A.

To analyze this phenomenon we cultured NSCs in the presence of EGF and H-IL-6 for 3P before differentiating them into glia cells for 5 d in NB media with either IL-6 alone or H-IL-6. Immunocytochemistry analysis showed that the presence of H-IL-6 in the NSCs’ culture (maintained with EGF plus H-IL-6 for 3P) allowed us to obtain clearly more differentiated GFAP-positive glia cells upon differentiation than without H-IL-6 (compare Figure 3A, control, with Figure 2A, control). Moreover, differentiation of the EGF/H-IL-6–grown NSCs either in the presence of IL-6 or H-IL-6 again showed that IL-6 alone did not have a significant effect on the morphological appearance of the astrocytes because NSCs still do not express the specific IL-6R (Figure 3A, control, vs. IL-6). In contrast, if differentiated in the presence of H-IL-6, astroglia cells show a significant different morphology—presenting less flat cytoplasm and having much more thin outgrowths (Figure 3A, control, and IL-6 vs. H-IL6).

Of utmost interest was our finding of the up-regulated expression of the neural marker TUJ-1. This finding prompted us to investigate the effect of H-IL-6 on neuronal differentiation in detail. NSCs were cultured in the presence of EGF and H-IL-6 for 3P before differentiating them for 5 d in NB media (control) or with either IL-6 alone or H-IL-6. This time, the common neural marker TUJ-1 was only slightly up-regulated in our immunohistochemical analysis when differentiated with NB medium or with IL-6. However, if neurospheres were differentiated with H-IL-6, we obtained not only more neurons but...
H-IL-6 Differentiates NSCs into Different Neuronal Subtypes

To examine whether H-IL-6 can differentiate NSCs into different specific neuronal subtypes, a Western blot analysis was performed of those cells grown either in EGF (control) or in EGF plus H-IL-6 or plus IL-6 for 3P and differentiated for 5 d in NB media with H-IL-6 or IL-6 as described in Figure 3, C and D. Interestingly, when NSCs were grown and differentiated in the presence of H-IL-6, H-IL-6 (but not IL-6 alone) induced the protein expression of several neuronal subtype-specific markers such as TH (dopaminergic neurons), GLU-V (glutamatergic neurons), GAD-67 (GABAergic neurons), MAP2 (a major MAP of brain tissue known to promote microtubule assembly and to form side-arms on microtubules, which also interacts with neurofilaments, actin, and other elements of the cytoskeleton) and STMN2, a neuron-specific stathmin protein with a potent microtubuledestabilizing factor that is enriched in the growth cones of developing neurons with high expression levels in the hippocampus. In addition, it has been suggested that STMN2 serves as an important regulatory factor of growth cone motility by enhancing microtubule dynamics, possibly through increasing the catastrophe frequency (Himi et al., 1994; Mori and Morii, 2002, 2006; Figure 3, C and D).

On the basis of these Western blot results, we evaluated the differentiated cells again with neuronal type-specific antibodies by immunocytochemistry (Figure 3E). For this purpose, NSCs were again grown with EGF or EGF plus H-IL-6 for 3P before differentiating them for 5 d in NB media (plus B27 supplement) with or without H-IL-6. The specific staining for MAP2, GLU-V, and GAD-67 clearly showed that H-IL-6 enhanced neurogenesis. In addition, the STMN2 staining (representative neurons were selected) was used to show that the H-IL-6--differentiated neurons showed obviously more and longer branches than the neurons in the control-differentiated group (Figure 3F). MAP2- and STMN2-positive cells obtained by immunocytochemistry were then counted in control and H-IL-6–treated cells (Figure 3, G and H).

H-IL-6 Mediates Neuronal Differentiation of NSCs via the MAPK/CREB Pathway

Previous reports have pointed out that the STAT-3 pathway is responsible for gliogenesis and suppression of STAT-3 enhances neurogenesis (Bonni et al., 1997; Gu et al., 2005). Thus, we analyzed additional signaling molecules that might be responsible for the H-IL-6–mediated neurogenesis. NSCs were grown in EGF (20 ng/ml) for 3P and then stimulated with H-IL-6 (100 ng/ml) or IL-6 (100 ng/ml) for 10 min as described in Materials and Methods before being subjected to Western blot analysis. Nonsurprisingly, we found a strong activation of STAT-3 as indicated by its phosphorylation. However, additionally, H-IL-6 activates via STAT-3 other known signaling pathways such as the RAS-MAPK ERK1/2 cascade (Heinrich et al., 2003). The key activator of the transcription factor CREB is the PKA that is upstream to the MAPK pathway and is responsible for the activation (phosphorylation) of CREB initiated in our study by H-IL-6 (Figure 4, A and B). On activation (phosphorylation), CREB translocates to the nucleus to activate gene transcription (Figure 4, A and B; Walterreit and Weller, 2003; Sands and Palmer, 2008). The finding that IL-6 cooperates with the NGF/TRKA signaling to promote neuronal differentiation inspired us to look also for the phosphorylation status of the NGF receptor kinase TRKA (Sterneck et al., 1996). Indeed, upon stimulation of the NSCs with H-IL-6 the TRKA receptor became significantly phosphorylated (Figure 4, A and B).
Another pivotal signaling molecule in controlling neuronal survival and differentiation is protein kinase B (AKT; Huang and Reichardt, 2003). Besides, very recently it has been shown that IL-6 can activate STAT-3 via AKT, which by itself is activated by the Ras/phosphatidylinositol 3-kinase (PI3K) pathway and responsible for neuronal survival (Oh-
Figure 4. Signaling pathway analysis of H-IL-6–activated NSCs neuronal-differentiation. (A and B) NSCs were grown in EGF (20 ng/ml) for 3P and then stimulated with H-IL-6 (100 ng/ml) or IL-6 (100 ng/ml) for 10 min as described in Materials and Methods before being subjected to Western blot. Results clearly show the activation of the JAK/STAT-3 and PKA/MAPK pathways. In addition, nuclear phosphorylated CREB (n) (CREB (c), cytoplasmic fraction) is significantly increased compared with control and IL-6–treated cells. cPKAα, catalytic subunit of protein kinase A α. (A) represents the quantitative analysis of the Western blots shown in B (*p < 0.05, compared with control). (C) Western blot is shown where NSCs were grown in the presence of the STAT-3 inhibitor cucurbitacin-I (Cucu-10/-100; 10 and 100 ng/ml) for 3P with EGF (20 ng/ml) and IL-6 (100 ng/ml). Almost all nestin- and GFAP-positive NSCs/progenitors seem to die (very low signal for either of them in the presence of Cucu-I), whereas TUJ-1–positive neuronal cells survive allowing neural precursors to differentiate upon...
STAT-3 Inhibition Leads to Neuronal Survival

Other scientists have indicated (at mRNA level) that the STAT-3 pathway is responsible for gliogenesis and that inhibition of STAT-3 leads to neurogenesis (Gu et al., 2005). Thus, to support our data that H-IL-6 indeed supports neuronal differentiation and survival in a STAT-3–independent manner, we applied the JAK/STAT-3 inhibitor cucurbitacin-I as well as a more specific STAT-3–inhibitory peptide. When cells were grown for 3P with EGF and H-IL-6 in the presence of the JAK/STAT-3 pathway inhibitor (cucurbitacin-I), mainly TUJ-1-positive neuronal progenitors could be detected and nestin- and GFAP-positive NSCs/progenitors were almost absent (Figure 4, A and B).

H-IL-6–differentiated Neurons Respond Specifically to the Ionic Glutamate/AMPA Receptor

To test the functionality of the H-IL-6–differentiated neurons, we applied various neurotransmitters and recorded the neuronal response. NSCs were grown in EGF for 3P. Control cells were differentiated in NB media while the H-IL-6 cells were grown in EGF plus H-IL-6 and also kept in H-IL-6 during the 5 d differentiation period. For ionic current measurement using a whole-cell patch clamp technique, 130 mM CsCl and 10 mM TEA-Cl were used in the internal solution to block potassium channels. Effects in detecting the NMDA–(NMDA-specific glutamate receptors) and glutamic acid–activated (ionotropic glutamate receptors) currents had not met with success in neurons of control-differentiated NSCs (n = 8, Figure 5A). However, when the H-IL-6–differentiated NSCs were studied, rapid inward currents of a few hundreds up to 3000 pA could be recorded in those neurons when 200 μM glutamic acid was applied into the extra-cellular solution. Similar to the control cells, NMDA did not induce a response in H-IL-6–differentiated neurons. As shown, the activated currents were not due to the opening of NMDA receptors, as there was no current activation when 200 μM NMDA plus 20 μM glycine were applied to the H-IL-6–differentiated cells (n = 8, Figure 5B). To test whether the currents activated by glutamic acid were via AMPA receptors, AMPA (the selective AMPA receptor agonist) and the selective noncompetitive AMPA antagonist GYKI-52466 were used to detect AMPA receptor protein expression in these H-IL-6–differentiated neural stem cells. Figure 5C reveals that H-IL-6–differentiated neurons contain glutamate receptors with an activated current display ing the characteristics of the AMPA receptor subtype (n = 7, Figure 5C). To study the current voltage (I–V) relationship of the H-IL-6–differentiated neural stem cells, we applied a ramp protocol. The I–V relationship was linear for both NMDA and AMPA activating currents, though the current activated by NMDA was very small, ~10 pA only (Figure 5, D and E). Concluding, H-IL-6–differentiated neurons respond specifically to the ionic glutamate/AMPA receptor.

DISCUSSION

The present study aimed at gaining more insight into the functional role of the IL-6R system during NSCs differentiation because increasing evidence supports an essential role for the IL-6 receptor family during development, differentiation, as well as de- and regeneration of neurons in the CNS. Ciliary neurotrophic factor (CNTF), for instance, mediates the maintenance of forebrain NSCs and enhances astrocyte differentiation (of those cells already committed to the glial lineage) but not astrocyte commitment through its specific receptor complex consisting of CNTFα, LIFR (leukemia inhibitory factor) and gp130 (Bonni et al., 1997; Shimazaki et al., 2001). Similarly, LIF does not mediate astrocyte differentiation (Molne et al., 2000). Although the JAK-STAT–signaling pathway has been described as being activated by the IL-6R family members and being responsible for gliogenesis, its action is opposed by the RAS-MAPK pathway that is rather responsible for neuronal differentiation (Bonni et al., 1997; Shimazaki et al., 2001; Gu et al., 2005; Taga and Fukuda, 2005).

In the CNS both IL-6 and its specific receptor (IL-6R) are expressed on neurons and glial cells including astrocytes (Gradient and Otten, 1997). Additional data indicate that IL-6—in conjunction with sIL-6R—regulates specific neurotrophin release from astrocytes in a brain-region–dependent manner (März et al., 1999). Moreover, IL-6 does not only promote neurite outgrowth and neuronal survival in cultured enteric and sensory neurons (Schäfer et al., 1999; Thier et al., 1999) but also supports neuro-regeneration of hippocampal neurons in the CNS (Hakkoum et al., 2007).

Here we demonstrate that NSCs do not express a functional IL-6R and thus do not properly respond to IL-6. We
also did not observe any release of IL-6 nor NGF by NSCs in NSC-conditional medium (using ELISA, data not shown).

However, if stimulated with the IL-6-sIL6R fusion protein H-IL-6, NSCs differentiate into glia and neurons. Besides the observation that H-IL-6 induces gliogenesis with morphological distinctive glia cells, the most interesting point in the present study is that we could detect an up-regulation of a wide range of different neuronal subtypes (glutamatergic, GABAergic, dopaminergic) that were responding specifically to glutamate via AMPA receptors and thus characterizing H-IL-6 as a more general differentiation factor for NSCs mediating neurogliogenesis.

Several years ago it has already been shown in the CNS that IL-6 can significantly alter neuronal development and response to the neurotransmitter glutamate by interfering with the expression and function of the glutamate receptor system (Qiu et al., 1995, 1998). Moreover, it has been described that different metabolotropic glutamate receptors (mGluRs) support self-renewal of NSCs and that functional NMDA-receptors may be expressed constitutively in neural progenitor cells to play a crucial role in commitment and differentiation (probably together with other mGluR subtypes) into neurons in the hippocampus (Melchiorri et al., 2007; Kitayama et al., 2004). Although our IL-6 differentiated neurons responded to AMPA only, we cannot rule out that NMDA-responsive neurons were among those differentiated cells. Taken together, future studies have to disclose the importance of the interplay between the IL-6 and Glu systems during NSCs differentiation.

Our analysis also revealed that H-IL-6 triggered gliogenesis via STAT-3 activation and neurogenesis through the activation of the MAPK pathway respectively resulting in an accumulation of nuclear phosphorylated CREB (p-CREB). Recent data provided evidence that CREB regulates differentiation and survival of newborn neurons thus supporting our observation (Giachino et al., 2005; Josselyn and Nguyen, 2005; Dworkin et al., 2007; Peltier et al., 2007). Although Gu et al. (2005) have shown that inhibition of STAT-3 enhances neurogenesis, more precisely, we could show that nestin-/GFAP-positive NSCs/progenitors died during complete STAT-3 inhibition while—in the presence of H-IL-6—TUJ-1-positive neuronal progenitors and NSCs could survive and differentiate into different neuronal subtypes via CREB and AKT activation.

Previously, it has been shown in Stat-3–deficient mice that the activity of the ERK-MAPK pathway remained intact as STAT-3 likely plays only a critical role in the commitment to cell cycle progression and gliogenesis (Gu et al., 2005; Chan et al., 2004). This is in line with our observation where the less specific JAK/p-STAT-3 inhibitor (cucurbitacin-I) leads to a down-regulation of nestin- and GFAP-positive NSCs/progenitors, whereas neuronal cells (TUJ-1-positive) remained alive—and, if applying the more specific p-STAT-3 inhibitor (p-iP-STAT-3), H-IL-6 is still capable of activating

Figure 5. Iontonic glutamate receptors in differentiated neural stem cells. (A) NSCs were grown only with EGF (20 ng/ml) for 3P in vitro and then differentiated in NB media plus B27 supplement for 5 d (without H-IL-6) as described in Materials and Methods. No ionic glutamate receptors were detected in these control-differentiated NSCs (n = 8). (B) NSCs were grown with EGF (20 ng/ml) in the presence of H-IL-6 (100 ng/ml) for 3P in vitro and then differentiated in the presence of H-IL-6 for 5 d as described in Materials and Methods. In H-IL-6—differentiated neural stem cells, glutamic acid-activated ionic receptors (non-NMDA receptors) were detected (n = 8). (C) H-IL-6—differentiated cells from B were further analyzed. The activation current was with AMPA characteristics as the selective noncompetitive AMPA antagonist GYKI-52466 could completely inhibit the AMPA-receptor agonist-mediated effect. The membrane potential was held at −70 mV. The short dashed line indicates the baseline of zero current (n = 7). (D) Currents activated by NMDA in H-IL-6—differentiated cells from B were very small, 10 pA only. The short dashed line is the membrane potential. The bold lines indicate the addition of 200 μM NMDA plus 20 μM glycine or the addition of 200 μM AMPA. (E) The current voltage (I-V) relationships of NMDA and AMPA receptor channels of H-IL-6—differentiated cells from B.
the RAS/MAPK/akt cascade and the transcription factor CREB, thereby (whereas STAT-3 signaling and gliogenesis is inhibited) mediating neuronal differentiation and survival.

Cucurbitacin-I is effective at suppressing the levels of p-STAT3 and p-JAK2, but unable to directly inhibit Src, JAK1, or JAK2 kinase activities. The Ras/Raf/MEK/ERK and the JNK signaling pathways are not inhibited by cucurbitacin-I. Because the phosphotyrosine JAK2 levels were also reduced by cucurbitacin-I, it has been suggested that JAK2 is likely not the target. Moreover, it may even slightly interfere with the EGFR signaling pathways (Blaskovich et al., 2003). This may explain our observation that higher doses of cucurbitacin-I led to NSCs death. As the gp130 subunit and the EGFR seem to form a receptor complex, it is likely that cucurbitacin-I inhibits the common gp130/EGFR-GAB1/SHIP2/JAK-Ras/MAPK-pathway which explains our observation of reduced p-CREB levels in the presence of cucurbitacin-I (Badache and Hynes, 2001). Our preliminary efforts could not clarify the detailed mechanism of H-IL-6–activated neuronal differentiation. For future experiments, any interference with the STATs and MAPK pathways has to take into account the complex interplay between growth and differentiation factors acting on the same signaling pathways which may lead to proliferation or differentiation depending only on different dynamics of MAPK/ERK activation (Kholodenko, 2007).

In addition, a recent report has shown that STAT-3 is not only acting as a transcription factor in the nucleus but might be also essential for neuronal differentiation because cytoplasmic STAT-3 modulates the microtubules network by binding to the COOH-terminal tubulin-interacting domain of stathmin and thereby antagonizing its microtubules destabilization activity (Ng et al., 2006). Thus, a complete down-regulation of STAT-3 expression (for instance by siRNA) may also affect neurogenesis. Because the cytoplasmic and nuclear functions of STAT-3 appear to be independent of one another, inhibition of (nuclear) p-STAT-3 may prevent gliogenesis while cytoplasmic STAT-3 is still able to support IL-6–mediated neurogenesis.

Early reports have described highest expression of both IL-6 and IL-6R within the hippocampus/dentate gyrus area of the adult mouse brain near zones of active continuous neurogenesis (Gadient and Otten, 1995; Otten et al., 2001; Kempermann and Gage, 1999; Brazel and Rao, 2004; Ming and Song, 2005). Potential cellular sources have been described as astrocytes for IL-6 and neurons for IL-6 and IL-6R (Gadient and Otten, 1995, 1997). Moreover, in the CNS IL-6 has the capability to act as proinflammatory cytokine or neurotrophic factor (Gadient and Otten, 1997; Otten et al., 2001). Thus, it is tempting to speculate that, during early stages of neurodegenerative diseases, apoptotic neurons my release the soluble IL-6R via an active shedding mechanism (similar as recently described for apoptotic neutrophils in the immune system; Chalaris et al., 2007; DeLeo, 2007), which in turn acts via trans-signaling with IL-6, released by activated astrocytes, on NSCs to induce neurogenesis (Figure 6). It would be of interest to see whether in vivo an intrinsic mechanism exists that could inhibit gliogenesis but enhances neurogenesis if activated by this trans-signaling pathway. The up-regulated gp130 receptor may sensitize NSCs as part of an amplification loop in this trans-signaling cascade (Klouche et al., 1999).

Moreover, the associative function between the IL-6R complex and the NGF receptor kinase TRKA has been described previously as “transactivation” (without its ligand NGF) of TRKA (Sterneck et al., 1996; Chao, 2003; Sorkin, 2005). Thus, IL-6–induced TRKA transactivation, as described in our study, might be one additional mechanism through which neuronal differentiation of NSCs is initiated.

Concluding, similar to the wide range of activities the classical neurotrophins show in the nervous and immune systems (Ayyadhury and Heese, 2007), IL-6 may also play a crucial role in the CNS (Balschun et al., 2004; Chiaretti et al., 2008) with sIL-6R as a pivotal regulator of regenerative processes and thus displaying H-IL-6 as potential neurotrophic survival and differentiation factor that might be useful, for instance in combination with inhibitors of the p-STAT-signaling pathways, for therapeutic approaches in various clinical applications.

ACKNOWLEDGMENTS

We thank Dr. Reto Gadient (AstraZeneca Pharmaceuticals, Wilmington, DE) for helpful suggestions and critical reading of the manuscript. This study was supported by A*STAR Grant BMRC/04/1/22/19/360 to K.H.

REFERENCES

