<table>
<thead>
<tr>
<th>Title</th>
<th>Bit-error-rate analysis of UWB radio using BPSK modulation over inter-chip radio channels for wireless chip area networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chen, Zhiming; Zhang, Yue Ping; Hu, Ai Qun; Ng, Tung Sang</td>
</tr>
<tr>
<td>Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6244</td>
</tr>
</tbody>
</table>

© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. http://www.ieee.org/portal/site This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Bit-Error-Rate Analysis of UWB Radio Using BPSK Modulation over Inter-Chip Radio Channels for Wireless Chip Area Networks

Zhiming Chen, Student Member, IEEE, Yue Ping Zhang, Ai Qun Hu, Member, IEEE, and Tung-Sang Ng, Fellow, IEEE

Abstract—Wireless chip area networks (WCAN) signify a new development in wireless communications, where wireless interconnections among different cores within a chip (intra-chip) or among different chips within a module (inter-chip) can be realized. In this paper, we analyze bit-error rate (BER) of an ultra-wideband (UWB) radio with binary phase-shift keying (BPSK) modulation over an inter-chip wireless radio channel. Specifically, a novel technique of dynamically shifting an integral window is proposed to reduce the effects of inter-symbol interference (ISI). BER expressions are analytically derived and verified by Monte Carlo simulations. Furthermore, by including both thermal and switching noise as the dominant noise sources, it is found that a BER less than 10^{-6} is feasible for a link distance up to 252 mm at a data rate of up to 650 Mbps. Besides, the link margin analysis shows that a link margin of 28.22 dB could be obtained for the same distance and data rate.

Index Terms—Wireless chip area networks, inter-chip, bit-error rate, binary phase-shift keying.

I. INTRODUCTION

In long-range systems, a wireless network covers a distance on the order of kilometers with a data rate of hundreds of kbps. The data rate increases with a shrinkage in the coverage range. In short-range systems, a wireless network is able to support a high rate on the order of tens of Mbps. For example, the wireless local area network (WLAN) standard 802.11g can cover an indoor distance around 30 meters up to 54 Mbps as released in June 2003 [1]. As the communication distance reduces to a few meters, the data rate rockets up to 600 Mbps [2]. From the range-speed relationship in the evolution of wireless communications, it can be deduced that with a sub-meter coverage, the communication speed can be further improved, i.e., to Gbps.

UWB technology emerges as a promising candidate for low-cost, high-performance and short-range applications. With a minimum fractional bandwidth 20% or absolute bandwidth 500 MHz, the maximum allowed effective isotropic radiated power (EIRP) is -41.3 dBm/MHz within the allocated frequency range from 3.1 to 10.6 GHz [3]. For an impulse radio, such a wide bandwidth can be realized by transmitting extremely narrow pulses at very low power spectral density (PSD). With a huge bandwidth and a narrow pulse width, the UWB technology features a variety of competitive advantages: low probability of detection and interception, high resolution capability, through-obstacle penetrating capability and robustness over multipath channels [4], [5]. Therefore, UWB is suitable for indoor high-rate data communications, low-rate data communications and accurate ranging.

In the semiconductor industry, the device feature dimension has been continuously scaled down to allow more transistors to be integrated into the same chip and to improve device performance. Furthermore, the chip size continues increasing at the same time such that more functions can be integrated into the same chip. However, as the width and thickness of wire interconnects are scaled down in proportion to the device feature dimension, the down scaling leads to problems of wire interconnects, especially at high frequencies, e.g., increased time delay, signal attenuation and dispersion, degraded bit-capacity, crosstalk, etc [6], [7]. To tackle the problems of wire interconnects in the age of high-speed semiconductor technology, WCAN proposed by Zhang is an innovative application which provides high data rates in close proximity [8], [9]. Apart from the application as an alternative for wire interconnects, a short-range high data rate link can be used to monitor and to diagnose computer systems as well [10]. Wireless interconnects can be used in concurrency with wire interconnects as a backup communication channel when mission-critical applications are running. An intra-chip BER evaluation and an inter-chip demonstration have been performed [9], [11]. In order to fully explore the capacity of wireless inter-chip channels, frequency domain data were sampled inside computer enclosures over 3.1 to 10.6 GHz for inter-chip channels and converted into the time domain using Inverse Discrete Fourier Transform (IDFT). Channel characteristics were obtained based on statistical modeling [12].

1536-1297/09$25.00 c$ 2009 IEEE
As there are dense multipaths in inter-chip channels, ISI becomes a significant performance-limiting factor. Conventionally, ISI can be reduced by using orthogonal frequency-division multiplexing (OFDM) in a multi-carrier communication system [13], [14], or using various equalizers in pulse-based systems [15]–[18]. In this paper, a relatively simple algorithm is proposed to reduce ISI in an impulse-based UWB radio. More importantly, for a transceiver to be designed to fully explore the radio channel capacity, it is necessary to perform a BER analysis to find out the supported data rates. Therefore, based on the inter-chip wireless channel modeled in [12], we analyze the BER for practical communication scenarios by taking various noise sources into consideration.

This paper is organized as follows. Section II provides a brief description for the modeled inter-chip wireless radio channel. In Section III, the communication system model is described. The proposed ISI reduction technique is presented in Section IV. Based on the proposed ISI-reduction technique, analytical expressions and numerical results of the BER analysis for inter-chip channels are derived in Section V. Finally, concluding remarks are drawn in Section VI.

II. INTER-CHIP WIRELESS RADIO CHANNEL

To obtain the statistical characteristics of a wireless inter-chip channel, data collection was performed in a typical commercial COMPAQ personal computer, where typical components such as an independent graphic card, memory chips, a hard drive, a floppy drive and a zip drive were installed [12]. A pair of UWB antennas [11], whose impedance bandwidth covers the 3.1-10.6 GHz band, were adopted for the channel measurement on a workbench in a typical laboratory. The collected data were recorded in an Agilent PNA-L network analyzer of the model N530A up to 20 GHz. With both scenarios of line-of-sight (LOS) and non-LOS (NLOS) included, the data sampling was performed in the frequency domain over UWB 3.1 to 10.6 GHz and the time-domain data were obtained using IDFT, resulting in sets of data with a time-domain resolution 1/(2B), where B is the measurement frequency span. The channel measurement covered a transmitter-receiver (T-R) distance from 62 to 252 mm. In the large-scale analysis, path loss is described by

$$\mathit{PL} = \gamma d_0 \log_{10}(d/d_0) + PL_0 + X_\sigma$$

(1)

where PL is the path loss, which gives the power attenuation in dB at distance d, γ, d_0, and PL_0 are the path loss factor, reference distance and interception point of the model-fitted line with the vertical power axis, respectively. The factor X_σ is a zero-mean Gaussian random variable in dB with a standard deviation σ. Parameters for the large-scale analysis are shown in Table I for both closed and open computer casings.

When the computer casing is closed, negligible energy escapes out of the metal boundary, resulting in a rich-multipath environment and therefore a lower path loss factor. However, the rich multipath gives a channel impulse response (CIR) with a long delay spread as well. The average delay spread over local measurements can be up to 1.8659 ns when the computer casing is closed. One important observation is that the exponential path loss model underestimates the received energy due to reactive coupling if an antenna is placed too close to the metal casing, e.g., 7 mm. To avoid the reactive coupling or a short circuit to the metal case, antenna placements in such manners are undesirable. In the small-scale analysis, the lognormal distribution, characterized by mean μ and standard deviation σ, is found as the best-fitted for the computer casing both closed and open. Both μ and σ follow normal distributions with different sets of parameters. For the scenario of a closed computer casing, μ and σ of the lognormal distribution are described by normal distributions with parameters $N(\mu_{\mu}, \sigma_{\mu})$ and $N(\mu_{\sigma}, \sigma_{\sigma})$, respectively. Both sets of parameters are dependent on the T-R separation distance d in mm as

$$\mu_{\mu} = 0.009741 \times d - 2.313$$

(2a)

$$\sigma_{\mu} = -0.004473 \times d + 1.909$$

(2b)

$$\mu_{\sigma} = -0.006687 \times d + 5.239$$

(2c)

$$\sigma_{\sigma} = -0.003702 \times d + 1.631$$

(2d)

Similarly, when the computer casing is open, mean μ' and standard deviation σ' of the lognormal distribution are described by another two sets of distance-dependent normal distribution parameters [12]. As an illustration, experimental and simulated power delay profiles (PDPs) are depicted in Fig. 1 at an average T-R separation of 228 mm for the closed computer casing.

In order to make sure that the channel is sampled in a representative environment for wireless inter-chip communications, measurement points were selectively sampled in a Ranger WorkHorse commercial computer of a different size and a different internal configuration with a different external environment. It has been found that for path loss, the verification data were close to values predicted by the fitted model within 2 dB and 5 dB for the computer casing closed and open, respectively. The larger deviation for the open casing is due to differences in both the internal configuration and the surrounding environment. The consistency between the fitted model and the verification data makes the modeling work a typical inter-chip radio channel.

III. SYSTEM DESCRIPTION

With the BPSK modulation adopted in the evaluation of BER performance for intra-chip interconnect systems and the design for wireless inter-chip interconnects [9], [11], we consider the same modulation scheme in this paper. Fig. 2 shows the block diagram of the inter-chip wireless communication system under consideration. The modulating signal $\{d_j\}_{j=-\infty}^{\infty}$ is an independent and identically distributed (iid) random

<table>
<thead>
<tr>
<th>parameter</th>
<th>Casing closed</th>
<th>Casing open</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.607</td>
<td>2.692</td>
</tr>
<tr>
<td>d_0 (mm)</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>PL_0 (dB)</td>
<td>23.78</td>
<td>25.27</td>
</tr>
<tr>
<td>σ (dB)</td>
<td>0.5482</td>
<td>1.9088</td>
</tr>
</tbody>
</table>

TABLE I

PATH LOSS PARAMETERS.
variable and can be ‘0’ or ‘1’ for binary signalling. Through the modulator of BPSK, the transmitted signal $s_{tr}(t)$ can be expressed as

$$s_{tr}(t) = \sum_{\omega_{tr}} \sqrt{A} \beta_j \omega_{tr} (t - jT_f)$$

where T_f is the pulse repetition frame time and $\omega_{tr}(t)$ is the energy normalized transmitted pulse with a duration T_m. A is to adjust the transmitted power. The modulation signal β_j for the jth pulse has a mapping with the source signal d_j as

$$\beta_j = 2 \times d_j - 1 = \begin{cases} -1, & d_j = 0 \\ +1, & d_j = 1 \end{cases}$$

The channel impulse response $h(t)$, including the effects of both transmitting and receiving antennas, can be expressed as

$$h(t) = \sum_{l=0}^{L-1} \alpha_l \delta(t - \tau_l)$$

where α_l and τ_l are the signal attenuation and delay for the lth path. $\delta(t)$ is the Dirac delta function and L is the total number of multipaths present.

The received signal at the input of the receiver correlator can be obtained as

$$r(t) = s_{tr}(t) \otimes h(t) + n(t)$$

$$= \sum_{j=-\infty}^{\infty} \sqrt{A} \beta_j \omega_{tr} (t - jT_f - \tau_d) + n(t)$$

where τ_d is the propagation delay between the transmitter and receiver involved and $n(t)$ is the additive white Gaussian noise (AWGN) characterized by mean zero and two-sided PSD $N_0/2$. The notation \otimes denotes the convolution operation. $\omega_{tr}(t)$ is the received pulse waveform including effects of the communication channel and both antennas

$$\omega_{tr}(t - \tau_d) = \omega_{tr} (t - jT_f) \otimes h(t)$$

$$= \sum_{l=0}^{L-1} \alpha_l \omega_{tr} (t - jT_f - \tau)$$

By assuming that perfect knowledge of the communication channel has been obtained, the decision variable Z_j at a synchronized receiver can be obtained as

$$Z_j = \int_{\tau_r + (j-1)T_f}^{\tau_r + jT_f} r(t)v(t)\,dt$$

where τ_r is the receiver time reference and $v(t)$ is the locally generated mask signal to be correlated with the received signal. The decision variable Z_j is then fed into a comparator to perform estimations of the transmitted bits $\{\hat{d}_j\}_{j=-\infty}^{\infty}$ according to

$$\hat{d}_j = \begin{cases} 0, & Z_j < 0 \\ 1, & Z_j > 0 \end{cases}$$

IV. ISI Reduction

The transmitted basic pulse is chosen as a polypulse described by

$$\omega_{tr}(t) = \frac{1}{\sqrt{E_p}} \sin(2\pi f_c t) \sin(2\pi f_c t)$$

where $f_c = 1/T_c$ and $f_c = 1/T_c$ are the envelope and carrier frequencies, respectively. E_p is to normalize the energy of the pulse to unity. The duration of the pulse is limited by $t \in [0, T_c/2]$. In order to meet requirements of the FCC UWB emission mask and a high data rate, we set $T_c = 0.75$ ns and $T_c = 0.15$ ns. With this polypulse, the -10 dB cut-off frequencies are at 3.9793 and 9.6166 GHz, respectively, leading to a -10 dB bandwidth of 5.6373 GHz.

The correlator mask signal at the receiver can be written as
\[v(t) = \sum_{j=-\infty}^{\infty} \omega_{\text{cor}}(t - jT_f - \tau_r) \tag{11} \]

where \(\omega_{\text{cor}}(t) \) a energy-normalized pulse waveform used for correlation. With an All-RAKE receiver implementation, \(\omega_{\text{cor}}(t) \) is the same as \(\omega_{\text{rec}}(t) \). Therefore, from (8), the decision variable \(Z_j \) for the \(j \)th pulse can be expanded as

\[
Z_j = \int_{\tau_r + (j-1)T_f}^{\tau_r + jT_f} \left[\sum_{j=-\infty}^{\infty} \sqrt{A\beta_j} \omega_{\text{rec}}(t - jT_f - \tau_d) + n(t) \right] \times v(t) \, dt \\
\begin{align*}
&= \sum_{m=-\infty}^{j-1} \sqrt{A\beta_m} \int_{\tau_r + (j-1)T_f}^{\tau_r + jT_f} \omega_{\text{rec}}(t - mT_f - \tau_d) \\
&\quad \times v(t) \, dt \\
&\quad + \sqrt{A\beta_j} \int_{\tau_r + (j-1)T_f}^{\tau_r + jT_f} \omega_{\text{rec}}(t - jT_f - \tau_d) \times v(t) \, dt \\
&\quad + \int_{\tau_r + (j-1)T_f}^{\tau_r + jT_f} n(t) \times v(t) \, dt \\
&= Z_{j,\text{ISI}} + Z_{j,D} + Z_{j,n} \tag{12}
\]

where \(Z_{j,\text{ISI}}, Z_{j,D} \) and \(Z_{j,n} \) are the contributions in \(Z_j \) from ISI, the desired signal and Gaussian noise. With the channel length denoted as \(T_{ch} \), which is determined by the first and last arrivals above noise floor, a metric \(k \) can be defined to quantify the severity of ISI

\[k = \lfloor (T_m + T_{ch}) / T_f \rfloor \tag{13} \]

where \(\lfloor x \rfloor \) rounds \(x \) up to the nearest integer. \(k - 1 \) gives the number of preceding pulses, whose residuals affect the decision of the \(j \)th pulse, when \(j \geq k \). Therefore the ISI-contributed term in \(Z_j \) can be rewritten as

\[
Z_{j,\text{ISI}} = \sum_{m=j-k+1}^{j-1} \sqrt{A\beta_m} \int_{\tau_r + (j-1)T_f}^{\tau_r + jT_f} \omega_{\text{rec}}(t - mT_f - \tau_d). \\
\quad \times v(t) \, dt \tag{14}
\]

The ISI term \(Z_{j,\text{ISI}} \) will be non-zero with the value of \(k \) greater than unity. If the residuals of the preceding \(k - 1 \) bits are strong enough, a wrong estimation of the \(j \)th transmitted pulse may be resulted. For different residuals of \(j \), the number of preceding pulses, which affect the \(j \)th pulse, can be expressed as

\[
\begin{cases}
 k - 1, & j \geq k \\
 j - 1, & j \leq k - 1
\end{cases} \tag{15}
\]

To illustrate the effects of residuals from the preceding pulses on the pulse under consideration, Fig. 3 depicts the mixer output with \(k = 5 \). The vertical lines indicate bit intervals in Fig. 3, where \(T_{ch} \) is less than 6 ns and \(T_f \) is the reciprocal of the data rate of 650 Mbps. The transmitted bits are 101010. Therefore, the correlator output should be \(+ + - + - + +\) for correct decision makings. However, the obtained results are \(+ + + + + +\), i.e., all the received bits are incorrectly estimated except for the first bit where there is no ISI.

Conventionally, ISI problems can be alleviated using approaches of OFDM techniques in a multi-carrier system [13], [14] or various equalizers in pulse-based systems [15]–[18]. For the adopted polypulse, the received signal preserves the same zero-crossing rate as the mask signal except at transitions in the successively transmitted bits. The zero-crossing rate refers to the frequency at which a signal crosses the \(x \) axis. As the transmitted signal passes through a multipath radio channel, the received signal is actually a sum of replicas of the transmitted signals with different delays and gains. The transmitted signal is a sinusoidal signal with an envelope as half a period of another sinusoidal signal. Therefore, the added replicas still possess the same zero-crossing rate but with different phases and gains, as compared to the transmitted signal. A transition in the consecutively transmitted bits will result in a distorted zero-crossing rate in \(r(t) \) with respect to the mask signal \(v(t) \) due to the residual of the preceding bit with a different sign, and therefore affect the decision making. In other words, if the consecutively transmitted bits are the same, the decision making will be correct even when there is ISI.

On the other hand, it is known that the received energy generally decays exponentially over time. Most of the received energy is actually confined in the beginning portion. Therefore, by finding an "optimal" position for the integral window, i.e., by adjusting \(\tau_r \) in (8), the integral can be performed with a focus on the desired pulse whereas effects of the preceding and succeeding pulses can be limited to a very low level. More specifically, the receiver time reference \(\tau_r \) can be broken into two parts as

\[
\tau_r = \tau_d + \tau_{sh} \tag{16}
\]

where \(\tau_d \) is to account for the propagation delay between the transmitter and receiver, and \(\tau_{sh} \) is to further dynamically search for the "optimal" integral window position. To avoid
distortions of many succeeding pulses, we limit the range of \(\tau_{sh} \) as \(\tau_{sh} \in [0, T_f] \). By denoting the decisional variable due to the received signal as \(Z_{j,r} = Z_{j,ISI} + Z_{j,D} \), \(Z_{j,r} \) is a function of \(k+1 \) pulses for \(j \geq k \): the preceding \(k-1 \) pulses, the \(j \)th pulse under investigation and the \((j+1) \)th pulse due to shifting of the integral window position. The maximum number of possible \(Z_{j,r} \) can be derived as

\[
P = \begin{cases} 2^{k+1}, & j \geq k \\ 2^{j+1}, & j < k-1 \end{cases}. \tag{17}
\]

Fig. 4 depicts the function \(Z_{j,r}(\tau_{sh}) \) over the shifted time \(\tau_{sh} \) with \(k = 5 \). In order to view the details about the effects of \(\tau_{sh} \), the simulation sampling frequency is set to 400 GHz. It can be observed that \(Z_{j,r}(\tau_{sh}) \) is symmetrical about the horizontal x axis. The symmetry corresponds to the balanced source signal \(\{d_j\}_{j=-\infty}^{\infty} \). For instance, the modulating source sequences 101101 and 010010 are mirrors of each other and their \(Z_{j,r}(\tau_{sh}) \) will be symmetrical about the horizontal x axis. As the number \(P \) increases exponentially over \(k \) with base 2, it implies that the actual computation complexity could be reduced by half. As a result, from (17), the maximum number of possible \(Z_{j,r} \) can be reduced to

\[
P = \begin{cases} 2^k, & j \geq k \\ 2^{j}, & j < k-1 \end{cases}. \tag{18}
\]

To obtain the optimal value of \(\tau_{sh} \), Fig. 5 gives the plot of \(Z_{j,r}(\tau_{sh}) \) when the \(j \)th pulse is for ‘1’ and the vertical dashed line indicates the optimal time shift \(\tau_{sh,\text{opt}} \). The desired correlator output is positive for a correct decision making. A more positive \(Z_{j,r}(\tau_{sh}) \) is preferred against noise during the decision making. Therefore, for the \(p \)th possible combination of the modulating source bits, where \(p \in P \) as shown in (18), an algorithm for obtaining the optimal time shift \(\tau_{sh,\text{opt}} \) can be described as

\[
\tau_{sh,\text{opt}} = \arg\max_{\tau_{sh}} \left\{ \arg\min_{p} \{ Z_{j,r}(\tau_{sh}) \} \right\}. \tag{19}
\]

More specifically, Fig. 6 gives a flow chart on how to find the \(\tau_{sh,\text{opt}} \), where \(\Delta \tau_{sh} \) is the search resolution. For different values of \(p \), the minimum values of \(Z_{j,r}(\tau_{sh}) \) at each \(\tau_{sh} \) are stored in buffer 2. The maximum value in buffer 2 corresponds to the position of \(\tau_{sh,\text{opt}} \). How close to theoretical maximum for the actually obtained \(\tau_{sh,\text{opt}} \) depends on the shifting resolution during the searching process for the optimum integral window position. Besides, if there is a relatively flat region near the \(\tau_{sh,\text{opt}} \) point as the segment of \(0.65T_f \) to \(0.8T_f \) in Fig. 5, the requirement on the search resolution \(\Delta \tau_{sh} \) could be relaxed. As in (16), ideal synchronization between the transmitter and receiver has been assumed. In practice, synchronization is important to the receiver performance since \(\Delta \tau_d \) gives the starting point to shift the integral window position. Techniques such as phase-locked loops (PLL) or delay locked loops (DLL) can be utilized to achieve accurate synchronization between the transmitter and receiver \cite{19}. However, if the flat portion in Fig. 5 is relatively large, the requirement on synchronization can be relaxed. Furthermore, it should be noted that scaling the mask signal \(v(t) \) with a constant does not change the sign of \(Z_{j,r} \). Therefore, for a transmitted bit as ‘1’, any constantly negative \(Z_{j,r}(\tau_{sh}) \) over the entire range of \(\tau_{sh} \) indicates an error decision, which cannot be solved by the proposed technique of shifting the integral window position. The error decision is caused by the overlapping of successively transmitted pulses, leading to uncontrollable ISI and resulting in an error floor in the BER. In this case, the solution is to lower the transmission bit rate or use other means to reduce the ISI. It is worthwhile mentioning that apart from the BPSK modulation scheme, the technique of dynamically shifting the integral window position has been verified in the binary pulse-position modulation (PPM) scheme as well.

V. BER ANALYSIS OVER INTER-CHIP CHANNELS

For certain combination of the transmitted modulating source bits, the bit error probability \(P_{e,j} \) can be expressed as a function of \(Z_j \).
Search for $\tau_{sh,opt}$

INITIALIZATION

$\tau_{sh}=0$

INITIALIZATION

Empty Buffer 1,2; $p = 1$

Write $Z_j^p(\tau_{sh})$ to buffer 1

$p = p + 1$

Compare buffer 1,2; Write the smaller values at τ_{sh} to buffer 2

$t_{sh} = \tau_{sh} + \Delta_{\tau_{sh}}$

Yes

$p < P$?

No

$t_{sh} < T_f$?

No

Find Z_{max} in buffer 2

Output τ_{sh} for Z_{max} as $\tau_{sh,opt}$

Fig. 6. Flow chart for $\tau_{sh,opt}$ searching.

\[
P_{e,j} = Q\left(\frac{E(Z_j)}{\text{std}(Z_j)}\right) \tag{20}
\]

where $E(x)$ gives the expected value of x and std the standard deviation. The Q function is defined as

\[
Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-t^2/2} dt. \tag{21}
\]

From (12) and (14), $E(Z_j)$ can be obtained as

\[
E(Z_j) = E\left(\sum_{m=j-k+1}^{j+1} \sqrt{A_{\beta_m}} r_m(t)\right)
+ E\left(\int_{T_d+\tau_{sh,opt}+(j-1)T_f}^{T_d+\tau_{sh,opt}+jT_f} n(t) \times v(t) \, dt\right). \tag{22}
\]

where $r_m(t)$ can be expressed as

\[
r_m(t) = \int_{T_d+\tau_{sh,opt}+(j-1)T_f}^{T_d+\tau_{sh,opt}+jT_f} \omega_{rec}(t-mT_f - \tau_d) \times v(t) \, dt. \tag{23}
\]

And the variance of Z_j can be derived as

\[
V ar(Z_j) = V ar\left(\sum_{m=j-k+1}^{j+1} \sqrt{A_{\beta_m}} r_m(t)\right)
+ V ar\left(\int_{T_d+\tau_{sh,opt}+(j-1)T_f}^{T_d+\tau_{sh,opt}+jT_f} n(t) \times v(t) \, dt\right)
= \frac{N_0}{2} R_{uu}(0) \tag{24}
\]

where $R_{uu}(\tau)$ is the auto-correlation function of the reference mask signal $v(t)$. Therefore, the general probability of error for the jth received pulse can be written as

\[
P_{e,j} = \frac{1}{P} \sum_{i=1}^{P} Q\left(\frac{E(Z_{j,i})}{\text{std}(Z_{j,i})}\right) \tag{25}
\]

where P is defined in (18). In the case when the total number of bits transmitted is N, the probability of a bit error can be obtained as

\[
P_{e} = \frac{1}{N} \sum_{i=1}^{N} P_{e,i}. \tag{26}
\]

The Q function in (25) can be re-written in the form of transmitted bit energy and the noise PSD $N_0/2$. The received signal amplitude is proportional to the square root of the transmitted bit energy E_{TX}

\[
Amp(r(t)) = B\sqrt{E_{TX}} \tag{27}
\]

where B is an unknown channel-dependent constant. Meanwhile, $E(Z_j)$ is in proportion to the received signal amplitude as in (22)

\[
E(Z_j) = C \times Amp(r(t)) \tag{28}
\]

where C is another channel-dependent constant. Combining (27) and (28)

\[
E(Z_j) = C \times B \times \sqrt{E_{TX}}
= D \sqrt{E_{TX}}. \tag{29}
\]

D is the product of B and C, and dependent on the particular channel condition as B and C. As from (6) and (22), the value of D is determined by two factors: the received signal energy and the ISI effect. These relationships will be verified by the BER performance over the changes in the T-R distance and the data rate later. Therefore the Q function in (25) can be modified as
where \(k \) channel with the optimal shift time

channel estimation can be at a low level. Furthermore, co-

can be considered as quasi-static. Hence, the rate of

this case, we consider two major noise sources: thermal and

switching noise. The thermal noise PSD can be calculated

in this figure (solid line), standard temperature (290 K), and noise factor. Noise

figure \((NF) \), the noise factor in dB, is around 5–8 dB for a

UWB receiver [20]. Therefore, the thermal noise PSD can be
obtained as \(-165.91 \text{ dBm/Hz} \) with an assumption that \(NF \) is

8 dB over the 3.1–10.6 GHz band.

In order to obtain an estimation of the switching noise PSD,
we use a monopole planar UWB antenna [11] to sample
the noise spectrum while a computer is running at its full capacity.
A leading-edge NEC dual-core commercial computer, with a
CPU frequency 3.0 GHz, is used for measurement. The switch-
ing noise occurs at harmonics of the fundamental frequency
1.5 GHz. The 3rd to 7th harmonics fall into the range of 3.1
to 10.6 GHz. The 3rd harmonic at 4.5 GHz is recorded as

to 10.6 GHz band.

As a result, the power-to-noise ratio

\[\frac{Pow}{N_0} \]

 increases logarithmically, leading to lower received bit energy.

Fig. 8 shows BER curves for the T-R distances at 62, 84, 133, 156, 162, 208, and 252 mm along the BER deteriorating
direction for a data rate of 650 Mbps. It can be observed that

approximately 21 dB more energy is required to achieve the
same BER performance (10\(^{-6}\)) for the largest T-R separation,
as compared to the shortest one. For the bit rate of 650 Mbps,

the transmitted power \(Pow \) in dBm is related to the transmitted

bit energy \(E_{TX} \) in mJ in log scale by

\[Pow = E_{TX} - 10 \log_{10}(T_f) = E_{TX} + 88.13 \]

As a result, the power-to-noise ratio \(Pow/N_0 \) varies from

129.03 to 150.11 dB over the variations of the T-R separation
distances. With the noise PSD including both thermal and

switching noise, the corresponding required transmitted power

varies from \(-36.85 \text{ to } -15.77 \text{ dBm} \) if the desired BER

performance is better than 10\(^{-6}\).

Apart from the bit energy and T-R separation distance, BER
To obtain the insight of the power-performance relationship, it is necessary to perform a link budget analysis. Taking the performance is a function of the data rate as well. Lowering the data rate is to increase the frame time \(T_f \). Correspondingly, \(k \), the channel length in terms of the number of pulses, becomes small, which implies that fewer preceding bits have effects on the pulse under investigation. Generally, this leads to reduced ISI. Fig. 9 shows the BER plot over data rate at 450, 500, 550, 600, 650, and 700 Mbps along the BER worsening direction at a propagation distance of 235 mm. It can be observed that for the same CIR, a variation of approximately 15 dB in \(E_{TX}/N_0 \) is obtained when the bit rate is changed from 450 to 700 Mbps.

To obtain the insight of the power-performance relationship, it is necessary to perform a link budget analysis. Taking the longest distance 252 mm as an example, the required transmitted power \(P_{\text{transmit}} \) is \(-15.77 \text{ dBm}\) to achieve a BER lower than \(10^{-6} \) for a data rate at 650 Mbps. The required transmitted power covers the path loss and gains of the transmitting and receiving antennas. Under the FCC regulations, the PSD of a transmitted UWB signal over 3.1 to 10.6 GHz can be up to \(-41.3 \text{ dBm/MHz}\), i.e., \(P_{\text{max}} = -2.55 \text{ dBm} \) in total. The link margin \(G_m \) can be expressed as

\[
G_m = P_{\text{max}} - P_{\text{transmit}} + G_r
\]

where \(G_r \) is the receiver gain, which is taken as 15 dB [11]. Therefore, the link margin is calculated as 28.22 dB. The implementation margin in [11] is assumed as 15 dB to cover the loss due to inevitable metal lines between the transmitter and receiver antennas and other marginal losses. The obtained high link margin \(G_m \) suggests that the transmitted power can be much lower than the maximum allowed transmitted power, though, in practice, the maximum transmitted power is always lower than the theoretical value of \(-2.55 \text{ dBm}\).

Fig. 8. BER over \(E_{TX}/N_0 \) over different distances at a data rate of 650 Mbps. The T-R distances are: 62, 84, 133, 156, 162, 208, and 252 mm.

Fig. 9. BER over \(E_{TX}/N_0 \) over different data rates at T-R separation of 235 mm. Data rates: 450, 500, 550, 600, 650, and 700 Mbps.

VI. CONCLUSION

BER analysis of a UWB radio using the BPSK modulation over inter-chip wireless channels has been performed. To reduce effects of ISI on the decision making at the receiver, the technique of dynamically shifting the integral window has been proposed. By dynamically shifting the integral window, an optimal position could be obtained for all possible combinations of residuals from preceding pulses. To obtain the BER performance over the wireless inter-chip channel, expressions have been derived analytically and verified by Monte Carlo simulations. It has been found that a BER less than \(10^{-6} \) is feasible for the coverage distance from 62 to 252 mm at a data rate up to 650 Mbps. With thermal and switching noise as the dominant noise sources, the link budget has been analyzed and it has been found that a link margin of 28.22 dB could be obtained for the largest T-R separation at 252 mm with a data rate of 650 Mbps.

REFERENCES

Zhiming Chen (S’04) was born in Jiangsu, China, in 1982. He received the B. Eng and Ph.D. degrees from Nanyang Technological University, Singapore, in 2005 and 2009, respectively, both in electrical and electronic engineering. From 2008, he is with the Institute of Microelectronics, Singapore. His research interests include study of inter-chip wireless interconnect system and RF transceiver design for wireless communications.

Yue Ping Zhang received the B.E. and M.E. degrees from Taiyuan Polytechnic Institute and Shanxi Mining Institute of Taiyuan University of Technology, Shanxi, China, in 1982 and 1987, respectively and the Ph.D. degree from the Chinese University of Hong Kong, Hong Kong, in 1995, all in electronic engineering. From 1982 to 1984, he worked at Shanxi Electronic Industry Bureau, from 1990 to 1992, the University of Liverpool, Liverpool, U. K., and from 1996 to 1997, City University of Hong Kong. From 1987 to 1990, he taught at Shanxi Mining Institute and from 1997 to 1998, the University of Hong Kong. He was promoted to a Full Professor at Taiyuan University of Technology in 1996. He is now an Associate Professor and the Deputy Supervisor of Integrated Circuits and Systems Laboratories with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. He has broad interests in radio science and technology and published widely across seven IEEE societies. He has delivered scores of invited paper/keynote address at international scientific conferences.