<table>
<thead>
<tr>
<th>Title</th>
<th>Ray-optical modeling of simulcast radio propagation channels in tunnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhang, Yue Ping; Hong, H. J.</td>
</tr>
<tr>
<td>Date</td>
<td>2004</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6313</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. http://www.ieee.org/portal/site This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.</td>
</tr>
</tbody>
</table>
Ray-Optical Modeling of Simulcast Radio Propagation Channels in Tunnels

Y. P. Zhang and H. J. Hong

Abstract—Simulcast radio propagation channel characteristics inside tunnels are considered in this paper. Based on the image theory of ray optics, a simulcast radio propagation channel in a rectangular tunnel is exactly formulated. As only the field components of horizontal and vertical polarization are of interest in real implementation, the exact formulation is approximated to facilitate the numerical computations. The calculated simulcast radio propagation channels are comparable fairly to measurements at 900 MHz and 2.0 GHz. The validated ray-optical modeling approach is then applied to simulate simulcast radio propagation channel characteristics at 900 MHz and 2.0 GHz to gain deeper insight and better understanding of this type of channels in tunnels. Results show that large fluctuations occur in the capture regions of the distributed antennas for both 900 MHz and 2.0 GHz. The fluctuations in the simulcast regions are larger at 2.0 GHz than at 900 MHz. The root-mean-squared (rms) delay spread is greater in the simulcast regions than in the capture regions of the distributed antennas. This larger delay spread is mainly due to the delay introduced by the transmission medium. Large values of the rms delay spread can be avoided by a careful design of the distance between the distributed antennas.

Index Terms—Distributed antenna systems, mobile communications, ray-optical modeling of radio propagation, tunnels.

I. INTRODUCTION

To extend public land mobile telephone systems into tunnels, the most serious factor to contend with has been the fundamental reality that radio signals do not penetrate into and radiate out of such environments effectively [1]. At a lower frequency, e.g., 450 MHz, radio signals also cannot propagate well inside tunnels and they suffer large attenuation. The traditional solution to this problem is to guide radio signals artificially by means of leaky coaxial cables that have to be installed throughout tunnels [2]. At a higher frequency, e.g., 900 MHz, the propagation of radio signals becomes improved and they can propagate naturally well inside tunnels. Thus, radio coverage of tunnels by discrete antennas has been attempted [3]. The leaky coaxial cable solution delivers uniform radio coverage but it becomes rather expensive for systems operating at higher carrier frequencies and it involves maintenance at regular intervals. In addition, it is quite cost intensive to install them after tunnels have been opened to the traffic. On the other hand, the discrete antenna solution is more economical. Discrete antennas can be easily and quickly installed and maintained but they cannot deliver uniform coverage. Also their coverage distances are often insufficient for long tunnels. Furthermore, the radio signals originated from discrete antennas are susceptible to the blockage from sizable vehicles; as a result, an additional fading margin must be introduced. To overcome the problems associated with the existing solutions and to meet future needs, the distributed antenna solution has been proposed [4]. The distributed antenna solution is based on the flexible combination of cheap transmission media with antennas to realize a single-cell or multiple-cell mobile radio communication network. An attractive feature of the distributed antenna solution is the possibility to use the transmission media that have already been installed for other purposes. An interesting property of the distributed antenna solution is that the propagation of radio signals is different from a capture region to a simulcast region. The capture region is the area where the power transmitted from one antenna dominates, while the simulcast region is the area between the two antennas where neither power from each antenna dominates. The distributed antenna solution to tunnel radio coverage is described in Section II. The radio propagation channels excited by the distributed antennas are formulated in Section III. The measured and simulated radio propagation channel characteristics are analyzed and discussed in Section IV. Section V summarizes the conclusions.

II. DISTRIBUTED ANTENNA SYSTEMS

The principle of using a distributed antenna system to cover a tunnel is to subdivide the tunnel into multiple shorter sections and let each antenna cover one short section [5]. A generic distributed antenna system consists of a signal source, a transmission medium, and multiple antennas. Depending on the frequency of the signals being transmitted over the medium and the requirement of the mobile telephone system capacity, the medium may be a twisted pair or a coaxial cable. For the twisted-pair distributed antenna system the signal source codes voice and data signals as in ADPCM digital format and complies digitized voice and data signals as in the standard E1 trunk 2.048 Mb/s. Assuming that 64 kb/s is for the signaling channel, a total number of 60 voice channels can be supported. The number of time-slots assigned to an antenna is configured according to the number of RF channels provided by the circuitry of the distributed antenna [5]. The separation between two adjacent distributed antennas can be up to 1.6 km. Based on the digital cordless phone common air interface at 900 MHz, a twisted pair distributed antenna system covering distances longer than 4 km has been demonstrated [6]. For the coaxial cable distributed antenna system the signal source directly injects modulated RF signals.
to the antennas tapped on the coaxial cable. The coverage of the coaxial cable distributed antenna system depends on the loss through the coupled portion of an antenna tap, the gain of the antenna on the coaxial cable fed from the tap, the loss from the antenna on the coaxial cable to the worst case position of a mobile radio, and the margin required to meet the link quality. To compensate for transmission loss in RF signal power inside the coaxial cable, bidirectional amplifiers need to be inserted at intervals along the coaxial cable. Though the ideal coaxial cable distributed antenna system would have cable sections of equal length and loss, tunnel restrictions for locating the cable, amplifiers, and antennas rarely make this possible.

For the aforementioned distributed antenna systems, the simulcast technique is often employed in coalmines or some tunnels where high-capacity mobile communication services are not required, while on the other hand, the frequency reuse technique has to be utilized in underground metropolitan cities or mass rapid transit tunnels where high-capacity services are expected. To implement distributed antenna systems, the modeling of simulcast radio propagation channels is absolutely essential in maximizing coverage distance, minimizing radiated power, path loss, far-field interference, and susceptibility to uplink interference and is also definitely useful in characterizing the cochannel interference for frequency reuse distributed antenna systems. Surprisingly, little work has been done to develop radio propagation channel models for distributed antenna systems [7] although extensive effort has been devoted to model radio propagation channels excited by a discrete antenna or a leaky coaxial cable in tunnels [8]–[18]. In the next section, we will formulate a simulcast radio propagation channel model based on the image theory of ray optics.

III. FORMULATION OF SIMULCAST RADIO PROPAGATION CHANNEL MODEL

Ray-optical modeling of radio propagation channels in urban and indoor environments has been a subject of active research since the last decade [19], [20]. Ray-optical modeling of radio propagation channels in tunnel environments can be traced back to as early as 1970s when Mahmoud and Wait derived a geometrical ray model for straight rectangular tunnels, taking into account the coupling between the horizontally and vertically polarized rays [8]. They found, however, that this coupling could be neglected if only the field components of major polarization are of interest. Zhang and Hwang extended the ray-optical approach to branched tunnels [13], [14] and Didascalou et al. to arbitrarily shaped tunnels [15], [16]. Chen and Jeng considered the effects of traffic vehicles in tunnels [17] and Pallares et al. the transition from land propagation to tunnel propagation [18].

A. Hertz Potentials

Here we consider the general case of a simulcast radio propagation channel in a rectangular tunnel as shown in Fig. 1. The fields can be obtained from any two suitable scalar potentials. Based on the problem to be solved, we choose $\Pi_{x\gamma}$, $\Pi_{y\gamma}$ as two
scalar functions, where \(\Pi_x \) and \(\Pi_y \) are \(x \) and \(y \) components of Hertz electric vectors, respectively, [8]. They are given by

\[
\begin{bmatrix}
\Pi_x(x, y, z) \\
\Pi_y(x, y, z)
\end{bmatrix}
= \frac{1}{4\pi\omega\varepsilon_0} \sum_m \sum_l \sum_j \left[\frac{\exp(-ik_0r_{lj} - ik_0\sqrt{\varepsilon_0}z_m)}{r_{lj}} \right] \\
\times \left[\frac{S_{xm}}{S_{ym}} \right]
\]

where \(\omega, \varepsilon_0, \varepsilon, k_0, i \) have the customary meaning, \(S_{xm} \) and \(S_{ym} \) are the horizontal and vertical moments of the \(m \)th distributed antenna located at \((x_m, y_m, z_m)\), \(z_m \) is the cable length between the \(m \)th distributed antenna itself and the first distributed antennas, \(l \) and \(j \) are integers representing the multiple images of the \(m \)th distributed antenna and the \(m \)th distributed antenna itself in any arbitrary manner, \(M_{lj} \) is the product of the reflection coefficients of the images taking into account the coupling between the horizontally and vertically polarized rays can be neglected. As a result, (1) is approximated as

\[
\begin{bmatrix}
\Pi_x(x, y, z) \\
\Pi_y(x, y, z)
\end{bmatrix}
= \frac{1}{4\pi\omega\varepsilon_0} \sum_m \sum_l \sum_j \left[\frac{\exp(-ik_0r_{lj} - ik_0\sqrt{\varepsilon_0}z_m)}{r_{lj}} \right] \\
\times \left[\frac{R_{Hjm} \cdot R_{Vjm}}{R_{Hjm} \cdot R_{Vjm}^*} \right] \\
\left[\frac{S_{xm}}{S_{ym}} \right]
\]

where \(R_H \) and \(R_V \) are the Fresnel reflection coefficients for horizontal and vertical polarizations, respectively, \(r_{jm} \) and \(r_{lj} \) are the numbers of reflection on the vertical and horizontal tunnel walls, respectively, involved in forming the \((I - j)\) image of the \(m \)th distributed antenna.

B. Electric Field

The respective horizontal and vertical electric field components are then obtained as follows:

\[
E_h(x, y, z) = \left(k_0^2 + \frac{\partial^2}{\partial x^2} \right) \Pi_x + \frac{\partial}{\partial y} \Pi_y
\]

\[
E_v(x, y, z) = \left(k_0^2 + \frac{\partial^2}{\partial y^2} \right) \Pi_x - \frac{\partial}{\partial x} \Pi_y
\]

C. Power

Modern RF equipment measures radio signal strength in power. The distributed antennas are often directional antennas. Knowing that the \(m \)th distributed antenna radiates \(P_{jm} \) power in the tunnel space and considering its gain and directivity, the received power by the received antenna for horizontal and vertical polarization can be expressed as

\[
\begin{bmatrix}
P_{rH} \\
P_{rV}
\end{bmatrix}
= \left(\frac{\lambda}{4\pi} \right)^2 \\
\times \sum_m \sum_l \sum_j \left[G_{ljm} \exp(-ik_0r_{lj} - ik_0\sqrt{\varepsilon_0}z_m) \right] \\
\times \left[\frac{R_{Hjm} \cdot R_{Vjm}}{R_{Hjm}^* \cdot R_{Vjm}} \right] \sqrt{P_{jm}}^2
\]

where \(G_{ljm} \) is the product of the \(m \)th distributed antenna and receive antenna field amplitude radiation patterns corresponding to the path originated from the \((I - j)\) image of the \(m \)th distributed antenna. Equation (9) is valid for rectangular tunnels and can also be applied to arched tunnels. The method of finding the locations of the images of the antennas in arched tunnels can be found in [17].

\[
[\tau_{rms}] = \sqrt{\frac{\sum_m \sum_l \sum_j P_{rHjm}^2 \tau_{ljm}^2}{\sum_m \sum_l \sum_j P_{rHjm}^2}} - \left(\frac{\sum_m \sum_l \sum_j P_{rHjm} \tau_{ljm}}{\sum_m \sum_l \sum_j P_{rHjm}} \right)^2
\]
D. Time Delay

One potential problem of a distributed antenna system is the delay spread introduced by the cable and the multiple antennas. This limits the maximum data rate that the system can support. A rough guideline to determine the maximum signal bandwidth is the coherence bandwidth, which can be computed from the rms delay spread. It can be computed by (10), as shown at the bottom of the previous page, where \(\tau_{r_m} \) is the excess time delay and \(P_{r_l m} \) is the received power from the ray originated from the \((l - j)\) image of the \(m\)th distributed antenna. \(\tau_{r_m} \) is given by

\[
\tau_{r_m} = \frac{\sqrt{\sigma_e^2 - \sigma_m^2}}{c} + \frac{\tau_{l m}}{c} - \frac{\tau_{c}}{c}. \tag{11}
\]

\(P_{r_l m} \) is expressed for horizontal polarization as

\[
P_{r_l m} = \left(\frac{\lambda}{4\pi} \right)^2 \times \left[\frac{G_{l,m} \exp(-ik_{s}t_{l,m})}{\tau_{l,m}} \right] \left[R_{H}^{l,m} \cdot R_{V}^{l,m} \right] \sqrt{P_{i,m}^2} \tag{12}
\]

and for vertical polarization as

\[
P_{r_v m} = \left(\frac{\lambda}{4\pi} \right)^2 \times \left[\frac{G_{l,m} \exp(-ik_{s}t_{l,m})}{\tau_{l,m}} \right] \left[R_{V}^{l,m} \cdot R_{H}^{l,m} \right] \sqrt{P_{i,m}^2}. \tag{13}
\]

The simulcast radio propagation channel model developed above suffers from the weakness of geometrical optics but no alternative way of solving excitation problems in tunnels has yet been proposed. Nevertheless, it still reveals some important propagation characteristics of the simulcast radio propagation channels in tunnel environments.

IV. RESULTS AND DISCUSSION

For validation purposes measurements have been made. In what follows the measurements are first described, and then the comparisons of the simulations with the measurements are presented. Finally the simulated results of simulcast radio propagation channels are discussed.

A. Experimental Validation

The measurements of the twisted-pair distributed antenna system were made in a corridor. The corridor is 3.83 m high, with a suspended tile false ceiling at 2.83 m, and 2.8 m wide. The ceiling and the floor of the corridor are reinforced concrete and the walls are brick. The system employed two HP 44233B signal generators and two monopoles as the distributed transmitters, an HP 8563E spectrum analyzer and a monopole as the receiver, and a personal computer as the data collector. Two distributed monopoles were installed in the corridor in a height of 1.6 m below the false ceiling and at a distance of 0.3 m from the left wall. Their separation distance was 30 m.

The measurements of the coaxial cable distributed antenna system were made in a tunnel. The tunnel is reinforced concrete with the height of 8 m and the width of 6 m. The system was an HP 8753D network analyzer: Port 1 of the network analyzer used as the transmitter; Port 2 utilized as the receiver; and the built-in disk driver employed as the data collector. The system was operated at the central frequency of 2.0 GHz with frequency spectrum over the range of 400 MHz, which yields an equivalent resolution of 2.5 ns and a repetition period of 500 ns in the time domain. Two slot arrays were constructed on the external conductor of the coaxial cable as two transmit antennas for the measurements in the tunnel. The slot array close to the transmitter was referred to the first slot array. The coaxial cable was installed 1.48 m high from the floor and 0.48 m away from the left wall of the tunnel. The separation distance between two adjacent slot arrays was 25 m. The receive antenna was a broadband discone antenna.

We divided our measurement efforts into two distinct categories: 1) dynamic narrowband measurements, we measured received signal power along the longitudinal direction of the corridor when the receiving antenna in a height of 1.5 m above the floor was being moved at a constant speed together with the receiver and data collector housed on a trolley; 2) static wideband measurements, we measured multipath impulse responses when the receiving antenna was stationary also at the height of 1.5 m above the floor. Measurements were taken on a cluster scale with the cluster having a size of 16 cm². The adjacent cluster on a route either parallel or radial to the cable was 1 m apart for most measurements. Four individual impulse responses were obtained for each cluster. Each individual impulse response was measured over several hundred microseconds. They were then averaged at each time delay to yield an averaged impulse response.

Fig. 2 shows the comparison of the measured and simulated received signal levels of vertical polarization at a distance of 1.4 m from the left wall of the corridor for the frequencies at 900 MHz and 2.0 GHz. To quantify the agreement of simulations and measurements, mean values and standard deviations of the difference in dB between the measured and simulated received signal levels are determined. The small mean error 0.32 dB and standard deviation 4.53 dB indicate the good performance of the model for the case of 900 MHz. The increased mean error and standard deviation for the case of 2.0 GHz can be explained by our measurement limitation. It was found that there was a frequency-drifting problem in one HP 44233B signal generator at 2.0 GHz. To combat this problem a broad frequency span was employed in our receiver. Thus, the measured received signal was not a truly simulcast signal. This can be seen from the shallow fading in the simulcast region (a short section in the middle area between two transmit antennas). On the contrary, the simulated received signal is a truly simulcast signal that displays the deep fading in the simulcast region. The different fade depths in the simulcast region between the measured and simulated received signal levels account for the increased discrepancy.

Fig. 3 shows the comparison of the normalized measured and simulated power delay profiles at a distance of 3 m from the left wall of the tunnel at 2.0 GHz. They agree reasonably. Many echoes are predicted and correlated with the multipath propagation structure by the model and experimentally verified as
having the correct delays. The first group of echoes before excess delay 25 ns is from the slot array closer to Port 1 of the network analyzer and the second group around 200 ns from the slot array far away from port 1. The echoes that occur from excess delay 25 ns to 165 ns are related with the multiple reflections from the walls of the tunnel. The first group of echoes is stronger than the second group of echoes in Fig. 3(a). On the contrary, the second group of echoes has an even higher power than the first group of echoes in Fig. 3(b). This is because the receive antenna was closer to the first slot array for Fig. 3(a) and to the second slot array for Fig. 3(b). The measured root mean square (rms) delay spread values for the two profiles are 64 and 69 ns while the simulated rms delay spread values are 60 and 62 ns.

B. Simulcast Radio Propagation Channel Characteristics

Having validated the simulcast radio propagation channel model, we now use it to study hypothetical simulcast radio links at 900 MHz and 2.0 GHz in a tunnel in order to gain deeper insight and better understanding of the simulcast radio propagation channels. The tunnel is assumed to have the following dimensions: width = 9 m, height = 5 m, and length = 1000 m. Depending on the methods and materials used to construct the tunnel, the dielectric constant ε_r and the conductivity σ of the tunnel walls may vary from 5 to 10 and from 0.01 to 0.1 S/m. We choose $\varepsilon_r = 10$ and $\sigma = 0.01$ S/m in our study. The distributed monopole antennas are fixed at (2.5, 4.5, 0), (2.5, 4.5, 500), and (2.5, 4.5, 1000), respectively. They are linked with an RF coaxial cable that has a typical dielectric medium of $\varepsilon_r = 1.32$. The receive monopole antenna is being moved along the longitudinal direction at (4.5, 2.5, z) into the capture and simulcast regions. Fig. 4 shows the received signal levels for the case of the three distributed antennas radiating the same power to the tunnel. The same radiated power implies that the coaxial cable transmission loss is compensated with in-line amplifiers. As shown, large fluctuations occur in the capture regions of the distributed antennas for both 900 MHz and 2.0 GHz. The fluctuations in the simulcast regions are larger at 2.0 GHz than at 900 MHz. Fig. 5 shows the rms delay spread...
Fig. 4. Received signal levels versus distance for the case of the three distributed antennas radiating the same power to the tunnel. (a) 900 MHz. (b) 2.0 GHz.

Fig. 5. RMS delay spread versus distance for the case of the three distributed antennas radiating the same power to the tunnel. (a) 900 MHz. (b) 2.0 GHz.

for the case of the three transmit antennas radiating the same power to the tunnel. Note that the rms delay spread is greater in the simulcast regions than in the capture regions of the distributed antennas and the rms delay spread is the largest in the first simulcast zone (region between the first and second distributed antennas from the signal source). This is due to the multipath rays of significant amplitude arriving at the simulcast zone from the furthest distributed antenna. For the subsequent simulcast zones, the delay-spread values are smaller due to the fact that the mean delay of the rays from the furthest antenna decreases. Also note that the rms delay spread is independent of the frequency, which is believed due to the result of the compensated coaxial cable transmission loss for this case.

Fig. 6 shows the received signal levels for the case of the three distributed antennas radiating different power to the tunnel. The different radiated power implies that coaxial cable transmission loss is uncompensated. Note that the distributed antenna of the 900-MHz simulcast system at 1000 m still makes noticeable fluctuations to the received signal power within its vicinity, but no similar effect can be seen for the 2.0-GHz simulcast system. This is because the 2.0-GHz simulcast system suffers from a greater signal loss due to the higher attenuation constant in the coaxial cable at higher frequencies (4.4 dB/100 m at 900 MHz and 6.5 dB/100 m at 2.0 GHz). The fluctuations diminish down the tunnel because the rays with multiple reflections from the furthest distributed antenna are too weak to contribute significantly to the received signal. Only the direct rays and the rays with one reflection from the distributed antennas contribute to the received signal as the receiver moves down the tunnel. Fig. 7 shows the rms delay spread for the case of the three transmit antennas radiating different power to the tunnel. Note that there is a steady increase in rms delay spread in the region just before the second distributed antenna. This can be explained by the fact that the second distributed antenna is able to radiate power of sufficient magnitude, which has been delayed by the coaxial cable, toward the first distributed antenna, thus making a significant impact on the rms delay spread. At the region after the second distributed antenna, the rays from the first distributed antenna have already decreased proportionally to the distance traveled, hence explaining for the different rms delay spread values around the second distributed antenna’s...
location. Also note that the rms delay spread is dependent on the frequency, which is believed due to the result of the uncompensated coaxial cable transmission loss for this case. The uncompensated coaxial cable transmission loss makes the furthest distributed antenna have the least influence on the propagation. Obviously, it becomes improper to spend the costs for installing this antenna.

It is interesting to compare the rms delay spread values for the above two cases. The rms delay spread values are much higher for the simulcast system with the same radiated power than those with different radiated power. The rms delay spread is critical for broadband simulcast distributed antenna systems. If the rms delay spread is large with respect to the signal pulse width, then equalization techniques should be considered for good reception. Table I summarizes the delay-spread values for the number of distributed antennas up to six. For a given coverage distance it is evident that the rms delay spread decreases for the case of the coaxial cable transmission loss compensated but increases for the case of the coaxial cable transmission loss uncompensated as the number of distributed antennas increases. This indicates that the larger rms delay spread can be avoided by careful design of the distance between the distributed antennas.

V. CONCLUSION

Based on the image theory of ray optics, a theoretical model for simulcast radio propagation channels in rectangular tunnels has been developed. The validated model was applied to study simulcast radio propagation channel characteristics at 900 MHz and 2.0 GHz inside a typical tunnel in order to gain deeper insight and better understanding of this type of channels in tunnels. It was found that simulcast radio propagation channel characteristics depend mainly on the excitation of channels and the separation of distributed antennas.

For simulcast radio propagation channels excited by the distributed antennas with the cable loss compensated, large fluctuations in received signal levels occurred in the capture regions of the distributed antennas for both 900 MHz and 2.0 GHz. The fluctuations in received signal levels in the simulcast regions were larger at 2.0 GHz than at 900 MHz. The rms delay spread...
was longer in the simulcast regions than that in the capture regions of the distributed antennas.

For simulcast radio propagation channels excited by the distributed antennas with the cable loss uncompensated, large fluctuations in received signal levels occurred in the capture regions of the distributed antennas near the signal source. The rms delay spread was frequency dependent. It was longer at 900 MHz than at 2.0 GHz. In addition, the rms delay spread was longer for the case of simulcast radio propagation channels excited by the distributed antennas with the cable loss compensated. This larger delay spread was caused by the delay introduced in the transmission medium and can be avoided by a careful design of the separation between the distributed antennas.

REFERENCES

Y. P. Zhang received the B.E. and M.E. degrees in 1982 and 1987, respectively, from Taiyuan Polytechnic Institute and Shanxi Mining Institute of Taiyuan University of Technology, Shansi, China, and the Ph.D. degree from the Chinese University of Hong Kong, Hong Kong, in 1995, all in electronic engineering.

He was with Shanxi Electronic Industry Bureau (1982–1984), the University of Liverpool, England (1990–1992), and City University of Hong Kong (1996–1997). He taught at Shanxi Mining Institute (1987–1990) and the University of Hong Kong (1997–1998). He was promoted to Full Professor at Taiyuan University of Technology in 1996. He is now an Associate Professor of the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. He has worked in the areas of propagation of radio waves, characterization of radio channels, miniaturization of antennas, and implementation of wireless communications systems. He is currently guiding a research group at the Integrated Systems Research Lab to develop advanced radio technologies for wireless communications.

H. J. Hong received the B.Eng. and M.Eng. degrees in 2001 and 2003, respectively, from Nanyang Technological University, Singapore, both in electronic engineering.

Since graduation, he has been with the Tuner Application Laboratory, Infineon Technologies. He is currently working on digital mobile television tuner concepts.