<table>
<thead>
<tr>
<th>Title</th>
<th>Feasibility study of adding a common-mode choke in PLC modem for EMI suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>See, Kye Yak; So, Ping Lam; Kamarul, A.</td>
</tr>
<tr>
<td>Date</td>
<td>2007</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6326</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. http://www.ieee.org/portal/site This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.</td>
</tr>
</tbody>
</table>
Feasibility Study of Adding a Common-Mode Choke in PLC Modem for EMI Suppression

K. Y. See, Senior Member, IEEE, P. L. So, Senior Member, IEEE, and A. Kamarul

Abstract—The feasibility of adding a common-mode (CM) choke in the analog front end (AFE) circuit of a power line communication (PLC) modem to reduce the CM noise coupling onto the power line is investigated. Based on a two-current-probe measurement approach, the CM and the differential-mode (DM) equivalent electrical models of a PLC modem are first developed. Both the CM and the DM attenuations due to the addition of a CM choke when the PLC modem is connected onto the power line network are then determined. Besides the CM noise attenuation, the impact of the CM choke on the PLC signal, which is DM in nature, is also studied.

Index Terms—Common-mode choke, electromagnetic analysis, electromagnetic interference, power system communication.

I. INTRODUCTION

WHILE the power line network has been viewed as a convenient and inexpensive communication medium for data and voice transmissions, its imbalance nature leads to the generation of common-mode (CM) noise current in the power line network, which causes electromagnetic interference (EMI) radiation that might interfere with the existing wireless communications users [1]–[4]. In reality, one has no control over the imbalances of the power lines and the loads connected to them. Hence, the only possible way to control the EMI radiation is to ensure that the RF source (the PLC modem) has very high CM impedance so that the CM current propagating through the power line network is kept to as low a level as possible. With the aim of reducing the CM current in the power line network, the authors have initiated a feasibility study of adding a CM choke in the analog front end (AFE) circuit of the PLC modem. Although the use of CM chokes is reported in some PLC trials to reduce the EMI radiations, no formal in-depth study has been carried out [4]. Thus, this paper aims to carry out a systematic in-depth study of the effectiveness of a built-in CM choke in a PLC modem in reducing CM noise current in the power line network. The effectiveness of the CM choke in suppressing the CM current in the power line network depends not only on the CM impedance of the choke itself but also on the CM impedance of the source (the PLC modem) and the CM impedance of the terminating load (the power line network). Ideally, a CM choke would not affect the differential-mode (DM) signal generated by the PLC modem. However, the imperfect cancellation of high frequency magnetic fluxes of the two windings of the CM choke results in a finite DM attenuation, which will have an impact on the communication signal transmitted by the PLC modem. To study the effectiveness of using the CM choke in controlling EMI from the PLC network as well as its impact on the useful DM communication signal transmitted by the PLC modem, equivalent CM and DM electrical circuit models for the PLC system are developed. Based on a two-current-probe measurement approach, the CM and DM equivalent circuit models of any PLC modem connected to any power line network can be established. These models would allow us not only to evaluate the CM noise suppression performance of the PLC modem with the built-in CM choke but also to assess the effects of the choke on the useful DM signals.

II. POWER LINE COMMUNICATION SYSTEM MODEL

Fig. 1 shows the measurement setup for the study. The PLC modem is programmed to be able to transmit and receive signals continuously in a “loopback” test mode without using a receiver modem. The PLC modem is modeled as a combination of equivalent CM and DM signal sources. The DM signal source represents the intended communication signal transmitted by the PLC modem and the CM signal source represents the unwanted CM noise generated due to imbalance of the power line network. To ensure the repeatability of the feasibility study, the PLC modem is connected to the power mains through a line impedance stabilization network (LISN) [5]–[7], which serves two purposes: First, it terminates the PLC modem with stable, well-defined CM and DM power mains impedances. Second, it facilitates direct measurements of the conducted emissions emitted by the PLC modem. However, the LISN alone does not have the capability to discriminate the CM noise emissions from the DM signals. To overcome this problem, a CM-DM discrimination network is added to the output of the LISN so that both the CM and DM emissions from the PLC modem can be discriminated and measured independently. The design and construction of the discrimination network can be found in [8] and will not be discussed here.

With the measurement setup shown in Fig. 1, the effects of adding a CM choke on both the CM and DM emissions can be analyzed systematically. By adding a CM choke to the output of the PLC modem, the CM and DM equivalent circuits of Fig. 1 can be represented in Figs. 2 and 3, respectively.

The DM conducted emission measured by the LISN is the intentional communication signal and is denoted as V_{signal}. The CM conducted emission measured by the LISN is the unwanted noise and is denoted as V_{noise}. From the equivalent circuits, the...

Manuscript received June 6, 2006; revised September 10, 2006. This work was supported by the Nanyang Technological University of Singapore. Paper no. TPWRD-00310-2006.

The authors are with the Network Technology Research Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (e-mail: eplos@ntu.edu.sg).

Digital Object Identifier 10.1109/TPWRD.2007.905274
CM and DM attenuations due to the addition of a CM choke are given by (1) and (2), respectively

\[
A_{T,CM} = \frac{V_{\text{noise}}}{V_{\text{noise}}} \tag{1}
\]

\[
A_{T,DM} = \frac{V_{\text{signal}}}{V_{\text{signal}}} \tag{2}
\]

where \(V_{\text{noise}}\) and \(V'_{\text{noise}}\) are the CM noises before and after adding the CM choke, respectively; and \(V_{\text{signal}}\) and \(V'_{\text{signal}}\) are the DM signals before and after adding the CM choke, respectively. The CM and DM attenuations can be derived and expressed as

\[
A_{T,CM}(\text{dB}) = 20 \log_{10} \left(1 + \frac{Z_{\text{inc,CM}}}{Z_{\text{LISN,CM}} + Z_{s,CM}}\right) \tag{3}
\]

\[
A_{T,DM}(\text{dB}) = 20 \log_{10} \left(1 + \frac{Z_{\text{inc,DM}}}{Z_{\text{LISN,DM}} + Z_{s,DM}}\right) \tag{4}
\]

III. CM AND DM ELECTRICAL MODELS OF A CM CHOKE

A 3.2-mH CM choke (model CMV4.0) from Roxburgh, which is commonly used to attenuate the CM conducted emissions in power electronics applications, is chosen for the feasibility study. The CM and DM impedances of the choke are measured in the frequency range of 100 kHz to 30 MHz using the Agilent 4395 A Impedance Analyzer. Fig. 4 shows the measured CM and DM impedance magnitudes of the choke. For any CM choke, it is impossible to achieve perfect cancellation of the magnetic fluxes of the two windings on the same magnetic core. Thus, the nonzero DM inductance is resulted from such imperfect cancellation, which leads to the finite DM impedance shown in Fig. 4.

Based on the trends of measured impedance magnitudes with respect to frequency, the CM and DM equivalent electrical models of the choke can be extracted. The CM electrical model of the choke can be represented by a \(RLC\) parallel circuit with the following parameters: \(R_{CM} = 11.10\ \text{k}\Omega\), \(L_{CM} = 3.24\ \text{mH}\), and \(C_{CM} = 10\ \text{pF}\). The DM electrical model of the choke can also be represented by a \(RLC\) parallel circuit with the following parameters: \(R_{DM} = 3.850\ \text{k}\Omega\), \(L_{DM} = 27.8\ \mu\text{H}\), and \(C_{DM} = 6.89\ \text{pF}\).

IV. CM NOISE AND DM SIGNAL SOURCE IMPEDANCES

To estimate impacts of the CM choke on the CM noise and the DM signal, the CM noise source impedance and the DM signal source impedance of the PLC modem must be established first.
The two-current-probe approach is employed to determine the CM noise and the DM signal source impedances of the PLC modem [9]–[11]. This section briefly describes the measurement methodology.

A. Two-Current-Probe Measurement Methodology

Fig. 5 illustrates the basic setup of the two-current-probe approach to measure the unknown impedance Z_X, where Z_X is connected to the high voltage power network. The measurement system consists of an injecting current probe, a monitoring current probe and a network analyzer. The two current probes and a decoupling capacitor C form a high-frequency coupler to avoid direct connection between the network analyzer and the high voltage power network. A pair of short wires with length d from the reference plane α to the reference plane β connects the coupler to Z_X. Port 1 of the network analyzer induces a continuous wave (CW) signal in the closed loop through the injecting current probe. Port 2 of the network analyzer measures the resultant current in the closed loop through the monitoring current probe.

The injecting current probe can be modeled as an equivalent transformer circuit as shown in Fig. 6. V_{p1} and Z_p are the source voltage and the source impedance of the injecting signal source from port 1 of the network analyzer, respectively. With the injected signal, the injecting probe induces a voltage V_w, which results in a current I_w circulating in the closed loop. L_p, L_w, and M are the primary self-inductance of the probe, the self-inductance of the wire in the probe volume, and the mutual inductance between the probe and the wire, respectively. V_{p1} and V_w can be expressed as follows:

$$V_{p1} = (Z_p + j\omega L_p)I_p = j\omega MI_w$$

$$V_w = -j\omega MI_p + j\omega L_w I_w.$$ \hspace{1cm} (5) \hspace{1cm} (6)

Combining (5) and (6) and eliminating I_p, we have

$$V_w = Z_{M1}I_w - V_{M1}$$

where

$$Z_{M1} = j\omega L_w + \left(\frac{(\omega M)^2}{Z_p + j\omega L_p}\right)$$

$$V_{M1} = V_{p1} \cdot \left(\frac{j\omega M}{Z_p + j\omega L_p}\right).$$

Combining (5) and (6) and eliminating I_p, we have

$$V_w = Z_{M1}I_w - V_{M1}$$

where

$$Z_{M1} = j\omega L_w + \left(\frac{(\omega M)^2}{Z_p + j\omega L_p}\right)$$

$$V_{M1} = V_{p1} \cdot \left(\frac{j\omega M}{Z_p + j\omega L_p}\right).$$

Equations (8) and (9) suggest that the injecting current probe at the reference plane α can be modeled by a Thevenin equivalent circuit as shown in Fig. 7. Z_{M2} is the reflected impedance in the loop due to the monitoring current probe.

From (9), the ratio V_{M1}/V_{p1}, which depends on the properties of the injecting probe and its operating frequency ω, is given by

$$K_R = \frac{V_{M1}}{V_{p1}} = \frac{j\omega M}{Z_p + j\omega L_p}.$$ \hspace{1cm} (10)

The typical wire length d between the reference planes β and γ is much shorter than the wavelength of the maximum frequency of interest (10 m at 30 MHz) and therefore its transmission line effect can be ignored. With Z_{ip} being the impedance seen by the unknown impedance Z_X at the reference plane β, V_{M1} can be redefined as

$$V_{M1} = (Z_{ip} + Z_X)I_w$$

where $Z_{ip} = Z_{M1} + Z_{M2} + Z_C$. Substituting V_{M1} from (11) into (10), Z_X can be evaluated by

$$Z_X = (K_R Z_{T2}) \cdot \left(\frac{V_{p1}}{V_{p2}}\right) - Z_{ip}$$

where $Z_{T2} = [V_{p2}/I_w]$ is the transfer impedance of the monitoring current probe and V_{p2} is the voltage measured by the monitoring probe. The ratio of V_{p1}/V_{p2} can be obtained through the S-parameters measurement using the network analyzer as follows:

$$\frac{V_{p1}}{V_{p2}} = \frac{S_{11} + 1}{S_{21}}.$$ \hspace{1cm} (13)
The product $K_R Z_{T2}$ is a frequency dependent coefficient that can be obtained by first removing Z_X and then measuring Z_{ip} using an impedance analyzer. Z_X is then replaced with a known precision resistor R_{std} (for example, a 100 $\Omega \pm 1\%$ carbon film resistor) and V_{ip}/V_{p1} is measured again using the network analyzer. Finally, the coefficient $K_R Z_{T2}$ can be obtained by

$$K_R Z_{T2} = \frac{Z_{ip}}{R_{std}} \left(\frac{V_{ip}}{V_{p1}}\right) Z_X = R_{std}.$$ \hspace{1cm} (14)

With $K_R Z_{T2}$ and Z_{ip} determined, the two-current-probe setup is ready to measure any unknown impedance Z_X. After measuring V_{p1} and V_{ip} using the network analyzer, Z_X can be found based on (12) and (13).

B. CM and DM Source Impedances of the PLC Modem

Using the two-current-probe approach, Figs. 8 and 9 show the setups used to measure the CM noise source impedance ($Z_{n,CM}$) and the DM signal source impedance ($Z_{n,DM}$) of the PLC modem, respectively. The Tektron CT-1 (5 mV/mA, bandwidth 25 kHz to 1000 MHz) and CT-2 (1 mV/mA, bandwidth 1.2 kHz to 700 MHz) current probes are chosen as the injecting and monitoring current probes, respectively. The Agilent 4395A Network Analyzer is employed for the S-parameters measurements.

For the CM impedance measurement, the two current probes and two “Y” class 0.1 μF capacitors (one for live-to-earth connection, and the other for neutral-to-earth connection) form the CM coupling circuit to avoid any direct connection to the power mains. For the DM impedance measurement, the two current probes and two “X” class 0.1 μF capacitors (both connected from live to neutral) form the DM coupling circuit.

The impedance Z_L is first measured without the PLC modem connected to the power line network, and then Z_T is measured with the modem connected to the network and in the active mode. Therefore, the source impedance of the PLC modem can be determined by

$$Z_S = \frac{Z_T Z_L}{Z_L - Z_T},$$ \hspace{1cm} (15)

Fig. 10 shows that $Z_{n,CM}$ is capacitive in nature with an estimated capacitance of 20 μF, which is contributed primarily by the parasitic capacitances between the primary and the secondary windings of the isolation transformer and the power transformer in the AFE circuit of the PLC modem. For $Z_{n,DM}$, it can be modeled as a resistance of 10 Ω connected in series with an inductance of 10 μH. By comparing the two impedance curves, it can be seen that $Z_{n,CM}$ is high impedance in nature whereas $Z_{n,DM}$ is low impedance in nature, within the frequency range of interest.

V. IMPACTS OF THE CM CHOKE

Based on the earlier measurements, the CM and DM equivalent circuit models of the PLC modem terminated with the LISN are shown in Figs. 11 and 12, respectively.

Given the values in Figs. 11 and 12, the CM and DM attenuations due to the insertion of the CM choke are calculated and plotted in Fig. 13. Interestingly, the CM choke seems to have a larger impact on the DM signal, since the DM attenuation is higher than the CM attenuation across the full frequency band. The CM attenuation remains relatively constant at around 10–12
Fig. 11. CM circuit model of the PLC modem terminated with the LISN.

Fig. 12. DM circuit model of the PLC modem terminated with the LISN.

Fig. 13. Calculated CM and DM attenuations due to the CM choke.

Fig. 14. CM noise before and after the CM choke is inserted.

Fig. 15. DM signal before and after the CM choke is inserted.

dB in the frequency range of 5–25 MHz whereas the DM attenuation can achieve attenuation of as high as 30 dB at around 9 MHz, with at least 15 dB at the other frequencies. A closer look reveals that the lower CM attenuation is expected due to the high-impedance nature of the CM noise source impedance of the PLC modem. Hence, the CM choke must provide much higher impedance than the noise source impedance in order to have a more significant impact on the CM noise suppression. On the other hand, the finite DM impedance due to the imperfect CM choke, though its magnitude is small, causes larger impact on the DM signal because of the low-impedance nature of the DM source impedance.

To further confirm the findings, the CM and DM conducted emissions measured by the LISN, with the help of CM-DM discrimination network, are shown in Figs. 14 and 15, respectively.

Fig. 14 shows the measured CM noise spectrums before and after the CM choke is inserted into the AFE circuit of the PLC modem. It can be seen that the CM noise in the frequency range of 5 MHz to 20 MHz is suppressed by 10 to 12 dB as predicted earlier by the CM equivalent circuit model. Fig. 15 shows the measured DM signal spectrums before and after the CM choke is added to the AFE circuit of the PLC modem. It can be seen that the PLC signal is attenuated by 15 to 30 dB throughout the PLC operating frequency range of 5 MHz to 20 MHz as predicted by the results derived from the DM equivalent circuit.

VI. CONCLUSION

The feasibility of adding a CM choke in a PLC modem for CM noise suppression has been studied. Both the theoretical models and the measured results have demonstrated that the equivalent CM and DM source impedances of the PLC modem have a strong influence on how well a CM choke performs in suppressing noise emissions in the power line network. Due to the high-impedance nature of the CM source impedance of the PLC modem, there is a certain limit on the CM noise attenuation that a CM choke can achieve. On the other hand, the finite DM impedance, which is due to the imperfection of the CM choke, has a much larger impact on the intentional DM signal because of the low-impedance nature of the DM source impedance of the PLC modem.

Hence, adding a CM choke in the AFE circuit of a PLC modem is not a feasible solution to reduce the CM noise in the power line network. Further work will be carried out to consider other alternatives so that large isolation barrier against CM noise can be offered without affecting the intentional PLC.
signal, for example, by replacing the existing isolation transformer in the AFE circuit of the PLC modem with an optical coupler unit.

REFERENCES

K. Y. See (SM’02) received the B.Eng. degree (Hons.) in electrical engineering from the National University of Singapore in 1986 and the Ph.D. degree in electrical engineering from Imperial College, London, U.K., in 1997.

Currently, he is an Associate Professor in the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. Previously, he worked eight years in industry, five years as Head of the Electromagnetic Compatibility (EMC) Centre, Singapore Technologies Electronic, Singapore, and three years as Lead EMC Design Engineer in ASTEC Custom Power, Singapore. His research interests are in the area of computational electromagnetics, EMC design for power electronics, signal integrity issues for high-speed design, and EMC measurement techniques.

Dr. See is the Deputy Chair of the IEEE Singapore EMC Chapter, a member of the Singapore Technical Committee of EMC, and an active Laboratory Assessor of the Singapore Accreditation Council. He is also the Organizing Committee Chair for the 2006 EMC Zurich Symposium in Singapore.

P. L. So (M’98–SM’03) received the B.Eng. degree (Hons.) in electrical engineering from the University of Warwick, Warwick, U.K., in 1993, and the Ph.D. degree in electrical power systems from Imperial College, University of London, London, U.K., in 1997. Currently, he is an Associate Professor in the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. He is also the Program Director (Power Line Communications) of the Network Technology Research Centre, Nanyang Technological University. Previously, he was a Second Engineer in the field of power system protection with the China Light and Power Company Ltd., Hong Kong, China, where he was for 11 years. His research interests are power system stability and control, FACTS, power quality, and power-line communications.

Dr. So is Treasurer of the IEEE Singapore Section.

A. Kamarul received the B.Eng. (Hons.) degree in electrical and electronic engineering from Nanyang Technological University, Singapore, in 2003, where he is currently pursuing the M.Eng. degree.

From 2003 to 2004, he participated in a research and training program in the area of optical communications with the Network Technology Research Center, Nanyang Technological University, under the sponsorship of the Economic Development Board of Singapore. He is an Electronics Design Engineer in the Asia Pacific Development Centre, Panasonic AVC Networks, Singapore. His research interests are in the areas of optical and power-line communications and the electromagnetic-interference and compatibility (EMI/EMC) design issues in power-line communication networks and systems.