<table>
<thead>
<tr>
<th>Title</th>
<th>SI and EMI performance of signaling scheme through UTP cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>See, Kye Yak; Wang, Lin Biao</td>
</tr>
<tr>
<td>Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6390</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. http://www.ieee.org/portal/site This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.</td>
</tr>
</tbody>
</table>
SI and EMI Performance of Signaling Scheme through UTP cable

L. B. Wang
School of Electrical and Electronic Engineering
Nanyang Technological University
Singapore
wang0474@ntu.edu.sg

K. Y. See
School of Electrical and Electronic Engineering
Nanyang Technological University
Singapore
ekysee@ntu.edu.sg

Abstract—Signal integrity (SI) and electromagnetic interference (EMI) performances of single-ended and differential-pair schemes through an unshielded twisted pair (UTP) cable have been studied systematically through experiment. The EMI performance is evaluated with measurement of common-mode (CM) noise current on the UTP cable. The SI performance is assessed by measurement of digital waveforms with and without the UTP cable connected.

Index Terms—Common-mode current, electromagnetic compatibility, signal integrity, low voltage differential signalling

I. INTRODUCTION

Data transmissions between electronic modules are usually achieved with either single-ended (SE) or differential-pair (DP) configuration. Analyses have been carried out to study the impact of characteristic impedance for different signaling schemes on EMI and voltage stability [1]. When high-speed digital signals propagate through a cable, SI problem may arise together with radiated emissions from the cable. Significant level of common-mode (CM) current on the cable can be an EMI concern [2]. It has been shown that SE signaling generates higher CM noise in the presence of a split ground plane on the PCB [3]. There is no comprehensive study on the SI and EMI performances of different signal schemes through cable, such as the unshielded twisted pair (UTP). This paper aims to carry out such a study for more conclusive results. To facilitate a systematic study, two logic families, low-voltage transistor-transistor logic (LVTTL) and low-voltage differential signalling (LVDS) are selected for SE and DP signaling schemes implementations, respectively [4]. For fair comparison, all these logic gates are sourced from the same manufacturer. To know the impact of data rates on the SI and EMI performances, digital signals at 25, 50, 75, and 100 MHz are selected for the study [5].

To evaluate the SI performance, digital signal waveforms will be measured with and without UTP cable. Also, the CM current will be measured at the mid-point of the UTP cable to access the EMI performance. The UTP cable is chosen for the study as it is commonly used for typical local area network (LAN) connections. The characteristic impedance of such cable is 100Ω ± 15Ω operating in the band of 1 MHz to 200 MHz [6].

II. DESIGN OF TEST CASE

Three printed circuit boards (PCBs) are designed and fabricated for this study [7]. Fig. 1 shows the schematic of the clock driver circuit for the LVTTL digital signal.

The circuit is fabricated on a two layer PCB. The clock buffer has the flexibility to generate clock frequency from 24 MHz to 200 MHz [8]. The second PCB contains a digital clock circuit that consists of a SE to differential driver [9]. It converts the SE serial input signals from the clock buffer to LVDS signals. The LVTTL – LVDS driver could handle a maximum data rate of 400 Mbps. Typical LVDS logic has an output differential voltage of 350 mV when terminated with a 100Ω resistor. According to the specifications, the minimum differential voltage terminated by a 100Ω resistor is found to be 247 mV. The traces for the output signals were kept short and symmetrical so as to minimize the differential-mode (DM) to CM conversion due imbalance [10]. For both the driver cards, they are able to make use of signals generated from an external source through a SMA connector interface. The provision allows the study to be carried out at different data transmission rates. The clock buffer provides well-defined logic signals of the same edge rate from the functional generator at varying clock frequencies of 25 MHz, 50 MHz, 75 MHz, and 100 MHz.
III. EXPERIMENTAL SETUP

Fig. 4 shows the experimental setup for performing the SI and the CM current measurements. To measure the digital waveforms, a high-speed digital phosphorous oscilloscope (500 MHz / 5 GS/s) is used. For the CM current measurement, a wideband current probe (1 MHz – 1.2 GHz) is employed. The current probe is clamped onto the middle of the UTP LAN cable of 2.7 m in length. A 25 dB pre-amplifier (1 MHz – 1.2 GHz) is connected between the current probe and the spectrum analyzer (9 kHz - 6.5 GHz) to improve the measurement sensitivity, as the CM current is usually quite small.

A. Signal integrity measurement results

Fig. 5 shows the measurement points to be probed for the SE signaling scheme.

For the measurement, the digital signal without any cable interface is obtained at probe point 1. Probe point 2, which is at the far-end of the cable, will be measured once the cable is connected to the LVTTL clock driver circuit. Using the measured waveform at probe point 1 as a reference, the waveform at probe point 2 will be compared with the reference waveform to access the SI performance of the transmitted signal through the cable. Figs. 6 to 9 show source and received waveforms of the LVTTL signals at different data rates. The results show that for LVTTL signal, the performance of the received signal degrades with increasing data rate. Very obvious signal distortion is observed. The amplitude of the received logic level can be nearly 50% of the transmit logic level.

![Figure 2. Schematic of circuit to generate LVDS signal](image)

![Figure 3. Block diagram of waveform monitor board for SE and DP signals measurement](image)

![Figure 4. Experimental setup for measuring SI and CM current](image)

![Figure 5. Probing points for LVTTL SE signaling](image)

![Figure 6. 25MHz LVTTL signal measured at probe points 1 and 2](image)

![Figure 7. 50MHz LVTTL signal measured at probe points 1 and 2](image)
Fig. 7. 50 MHz LVTTL signal measured at probe points 1 and 2

Fig. 8. 75 MHz LVTTL signal measured at probe points 1 and 2

Fig. 9. 100 MHz LVTTL signal measured at probe points 1 and 2

Fig. 10. Terminations and probe points for LVDS circuit

Fig. 11. Attenuation of Cat 5 UTP cable versus frequency

Figs. 12 to 15 show the waveforms for the LVDS signal measured at probe points 1 and 2 for 25 MHz, 50 MHz, 75 MHz and 100 MHz date rates, respectively.

The measured results show that though the received signal suffered some distortion but the logic levels have little attenuation, even up to 100 MHz clock speed.

Fig. 12. 25 MHz LVDS signal measured at probe points 1 and 2

Fig. 13. 50 MHz LVDS signal measured at probe points 1 and 2
Fig. 17 shows the CM noise current measured when LVDS signal of the four clock frequencies are sent through the UTP cable. It shows that CM current levels are 20 to 30 dB lower than those of the SE signaling. At 100 MHz, noticeable levels of CM currents begin to show up but are still much lower than those of the SE signaling operated at the same frequency.

V. CONCLUSIONS

A systematic study of the SE and DP signaling schemes through an UTP cable has been carried out experimentally. It shows that even at relatively low data rate of 25 MHz, the LVDS signal (SE scheme) has already suffered from significant signal distortion and attenuation. Also, significant amount of CM noise current with harmonics up to 1 GHz is also observed, which indicates a high EMI potential to other communication users. As for the LVTTL signal (DP scheme), reasonably good SI is observed and CM noise current begins to surface when the data rate exceeds 75 MHz.

REFERENCES