<table>
<thead>
<tr>
<th>Title</th>
<th>A continuation method for nonlinear complementarity problems over symmetric cones.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chua, Chek Beng.; Yi, Peng.</td>
</tr>
<tr>
<td>Date</td>
<td>2010</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6829</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2010 Society for Industrial and Applied Mathematics. This is the author created version of a work that has been peer reviewed and accepted for publication by SIAM Journal on Optimization, Society for Industrial and Applied Mathematics. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1137/090755321].</td>
</tr>
</tbody>
</table>
A CONTINUATION METHOD FOR NONLINEAR COMPLEMENTARY PROBLEMS OVER SYMMETRIC CONES

CHEK BENG CHUA∗ AND PENG YI†

Abstract. In this paper, we introduce a new P-type property for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P-type property represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically.

Key words. nonlinear complementarity problem, homotopy Newton method, P-property, symmetric cones, Jordan algebra

AMS subject classifications. 90C33, 65H20, 65K05

1. Introduction. The nonlinear complementarity problem (NCP) is the problem of finding, for a given map \(F: \mathbb{R}^n \to \mathbb{R}^n \), a nonnegative vector \(x \in \mathbb{R}^n \) such that

\[
F(x) \geq 0 \quad \text{and} \quad x^T F(x) = 0.
\]

Both NCP and its special case when \(F \) is affine—known as the linear complementarity problem (LCP)—are well documented in the literature (see, e.g., [13, 24]). A popular way to solve the NCP is to reformulate it as a system of nonlinear equations via NCP-functions or via the normal map. We refer the reader to [17, 41] and the references therein for a review on NCP-functions. In the normal map approach, every solution to the NCP corresponds exactly to a solution to the normal map equation (NME)

\[
z \mapsto F(z^+) + z^- = 0
\]

via \(x = z^+ \) and \(z = x - F(x) \), where \(z^+ \) denotes the component-wise maximum of the zero vector and \(z \), and \(z^- \) denotes the component-wise minimum (or, equivalently, \(z - z^+ \)) [15].

The normal map reformulation can be extended to nonlinear complementarity problems over general convex cones, which are problems of finding, for a given map \(F: E \to E \) and some given closed convex cone \(K \subseteq E \), an \(x \in K \) such that

\[
F(x) \in K^\circ \quad \text{and} \quad \langle x, F(x) \rangle = 0.
\]

Here, and henceforth, \(E \) denotes a Euclidean space with inner product \(\langle \cdot, \cdot \rangle \) and \(K^\circ \) denotes the closed dual cone

\[
\{ s \in E : \langle s, x \rangle \geq 0 \ \forall x \in K \}.
\]

Using the Löwner partial order where \(x \succeq_K y \) means \(x - y \in K \), this nonlinear complementarity problem is equivalently described as

\[
x \succeq_K 0, \ F(x) \succeq_K 0 \quad \text{and} \quad \langle x, F(x) \rangle = 0.
\]

∗Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371 (cbchua@ntu.edu.sg).
†Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371 (yipeng@ntu.edu.sg).
(We will also use $x >_K y$ to mean $x - y \in \text{int}(K)$, the interior of K.) In this general setting, the NME becomes

$$F(\text{Proj}_K(z)) - \text{Proj}_K(\bar{z}) = 0.$$ \hfill (1.1)

Here, and henceforth, Proj_K denotes the Euclidean projection onto K.

In this paper, we focus on solving the normal map formulation in the setting where K is a symmetric cone. A symmetric cone is a self-dual closed convex cone whose linear automorphism group acts transitively on its interior. Symmetric cones have been completely classified as the direct sum of cones from five irreducible groups [16]:

1. the quadratic cones \(\{ x \in \mathbb{R}^{n+1} : x_{n+1} \geq \sqrt{x_1^2 + \cdots + x_n^2} \} \) for \(n \geq 2 \);
2. the cones of real symmetric positive semidefinite \(n \times n \) matrices for \(n \geq 1 \);
3. the cones of complex Hermitian positive semidefinite \(n \times n \) matrices for \(n \geq 2 \);
4. the cones of Hermitian positive semidefinite \(n \times n \) matrices of quaternions for \(n \geq 2 \);
5. the cone of Hermitian positive semidefinite \(3 \times 3 \) matrices of octonions.

We shall rely heavily on Euclidean Jordan algebraic characterization of symmetric cones. Thus we identify the Euclidean space \mathbb{E} with a Euclidean Jordan algebra \mathbb{J} associated with the symmetric cone K. We refer the readers to Section 2 for more details on Euclidean Jordan algebras.

The nonlinear complementarity problem over the cone K shall be denoted by $\text{NCP}_K(F)$. When F is affine, say $F(x) = L(x) + q$ for some linear transformation $L : \mathbb{E} \to \mathbb{E}$ and some vector $q \in \mathbb{E}$, we may also write $\text{LCP}_K(L, q)$ or $\text{LCP}_K(M, q)$, where M is a matrix representation of L, instead of $\text{NCP}_K(F)$. In this case, the problem is called a linear complementarity problem over the cone K. We may also drop the subscript K when the cone is \mathbb{R}^n_+.

The main difficulty in solving the NME (1.1) is the nonsmoothness of the Euclidean projector Proj_K [42]. Among various methods proposed to overcome this difficulty is the use of smoothing approximations of the Euclidean projector. Proposed by Chen and Mangasarian [6], a class of parametric smooth function approximating Euclidean projector for nonnegative orthants has had a great success in smoothing methods for the NCP. See, e.g., [1, 3, 4, 8, 37] and the references therein. Chen et al. [4] proposed a continuation method for the NCP via normal maps and reported some encouraging numerical results. In this paper, by employing a subclass of Chen and Mangasarian’s smoothing functions to approximate the NME, we study a continuation method for solving $\text{NCP}_K(F)$. We show that this method is globally convergent under some suitable P-type property on F. In general, we find that this P-type property lies between the concept of P-property and uniform P-property when K is polyhedral.

There recently has much research in studying symmetric cone complementarity problems; see, e.g., [20, 21, 22, 30, 32, 36, 42, 43]. It is also noted that there are many existing algorithms for solving $\text{NCP}_K(F)$. These include algorithms using merit functions extended from the context of NCP [44, 45], smoothing Newton methods [7, 10, 12, 18, 25, 27, 29, 35, 38], interior-point methods [39, 46], and non-interior continuation methods [11, 26]. All these algorithms require either the the monotonicity of F or the nonsingularity of the Jacobians of the systems involved. Thus, an interesting question is to identify a class of nonmonotone NCP_K which can be solved without any nonsingularity assumption. Related work has been done by Chen and Qi [9] by introducing the concept of Cartesian P-property for $\text{LCP}_K(L, q)$, where K
is a direct sum of cones of symmetric positive semidefinite matrices. The natural extension of the Cartesian P-property to the general case where K is a symmetric cone is

$$\max_{1 \leq \nu \leq \kappa} \langle x_{\nu}, L(x)_{\nu} \rangle > 0 \quad \forall x \neq 0,$$ \hspace{1cm} (1.2)$$

where x_{ν} denotes the ν-th component of x in the direct sum $\mathfrak{J} = \mathfrak{J}_1 \oplus \cdots \oplus \mathfrak{J}_\kappa$ of Euclidean Jordan algebras corresponding to the direct sum $K = K_1 \oplus \cdots \oplus K_\kappa$ of irreducible symmetric cones. In one extreme case where the \mathfrak{J}_ν’s are isomorphic to \mathbb{R}, the Cartesian P-property reduces to the P-property of the matrix representation of L. However, in general, we show that the Cartesian P-property implies our P-type property. Thus, our P-type property gives a wider class of nonmonotone nonlinear complementarity problems over symmetric positive semidefinite cones (and, in general, symmetric cones) that can be solved numerically, without requiring any nonsingularity assumptions.

The paper is organized as follows. In the next section, we briefly review relevant concepts in the theory of Euclidean Jordan algebras. In Section 3, we formulate the nonsmooth NME as a system of smooth equations. In Section 4, we introduce a new equivalent definition of P-matrix which results in a new property that lies between P- and uniform P-properties when extended to nonlinear function. We then extend this new property to functions defined on Euclidean Jordan algebras. In Section 5, we discuss the boundedness and uniqueness of solution trajectory for the continuation method. The continuation algorithm and its convergence analysis will be studied in Section 6.

2. Euclidean Jordan algebras. In this section, we review concepts in the theory of Euclidean Jordan algebras that are necessary for the purpose of this paper. Interested readers are referred to Chapters II–IV of [16] for a more comprehensive discussion on the theory of Euclidean Jordan algebras.

Definition 2.1 (Jordan algebra). An algebra (\mathfrak{J}, \circ) over the field \mathbb{R} or \mathbb{C} is said to be a Jordan algebra if it is commutative and the endomorphisms $y \mapsto x \circ y$ and $y \mapsto (x \circ x) \circ y$ commute for each $x \in \mathfrak{J}$.

Definition 2.2 (Euclidean Jordan algebra). A finite dimensional Jordan algebra (\mathfrak{J}, \circ) with unit e is said to be Euclidean if there exists a positive definite symmetric bilinear form on \mathfrak{J} that is associative; i.e., \mathfrak{J} has an inner product $\langle \cdot, \cdot \rangle$ such that

$$\langle x \circ y, z \rangle = \langle y, x \circ z \rangle \quad \forall x, y, z \in \mathfrak{J}.$$

Henceforth, (\mathfrak{J}, \circ) shall denote a Euclidean Jordan algebra, and e shall denote its unit. We shall identify \mathfrak{J} with a Euclidean space equipped with the inner product $\langle \cdot, \cdot \rangle$ in the above definition. For each $x \in \mathfrak{J}$, we shall use L_x to denote the linear endomorphism $y \mapsto x \circ y$, and use P_x to denote $2L_x^2 - L_{x \circ x}$. By the definition of Euclidean Jordan algebra, L_x, whence P_x, is symmetric under $\langle \cdot, \cdot \rangle$. The linear endomorphism P_x is called the quadratic representation of x.

Definition 2.3 (Jordan frame). An idempotent of \mathfrak{J} is a nonzero element $c \in \mathfrak{J}$ satisfying $c \circ c = c$. An idempotent is said to be primitive if it cannot be written as the sum of two idempotents. Two idempotents c and d are said to be orthogonal if $c \circ d = 0$. A complete system of orthogonal idempotents is a set of idempotents that are pair-wise orthogonal and sum to the unit e. A Jordan frame is a complete system of primitive idempotents. The number of elements in any Jordan frame is an
invariant called the rank of \mathfrak{J} (see paragraph immediately after Theorem III.1.2 of [16]).

Remark 2.4. Orthogonal idempotents are indeed orthogonal with respect to the inner product $\langle \cdot, \cdot \rangle$ since

\[\langle c, d \rangle = \langle c \circ e, d \rangle = \langle e, c \circ d \rangle.\]

Primitive idempotents have unit norm.

Henceforth, r shall denote the rank of \mathfrak{J}.

Theorem 2.5 (Spectral decomposition of type I, Theorem III.1.1 of [16]). Each element x of the Euclidean Jordan algebra (\mathfrak{J}, \circ) has a spectral decomposition of type I

\[x = \sum_{i=1}^{k} \lambda_i c_i,\]

where $\lambda_1 > \cdots > \lambda_k$, and $\{c_1, \ldots, c_k\} \subset \mathfrak{J}$ forms a complete system of idempotents. Moreover, the λ_i's and c_i's are uniquely determined by x.

Theorem 2.6 (Spectral decomposition of type II, Theorem III.1.2 of [16]). Each element x of the Euclidean Jordan algebra (\mathfrak{J}, \circ) has a spectral decomposition of type II

\[x = \sum_{i=1}^{r} \lambda_i c_i,\]

where $\lambda_1 \geq \cdots \geq \lambda_r$ (with their multiplicities) are uniquely determined by x, and $\{c_1, \ldots, c_r\} \subset \mathfrak{J}$ forms a Jordan frame.

The coefficients $\lambda_1, \ldots, \lambda_r$ are called the eigenvalues of x, and they are denoted by $\lambda_1(x), \ldots, \lambda_r(x)$.

Remark 2.7. The two spectral decompositions are related as follows: If $x = \sum_{i=1}^{k} \mu_i d_i$ and $x = \sum_{i=1}^{r} \lambda_i(x) c_i$ are spectral decompositions of type I and II, respectively, then for each $i \in \{1, \ldots, k\}$, we have $d_i = \sum_{j: \lambda_j(x) = \mu_i} c_j$.

Remark 2.8. Two elements share the same Jordan frames in their type II spectral decompositions precisely when they operator commute [16, Lemma X.2.2]; i.e., when the linear endomorphisms L_x and L_y commute.

Henceforth, all spectral decompositions are of type II, unless stated otherwise.

Theorem 2.9 (Characterization of symmetric cones, Theorems III.2.1 and III.3.1 of [16]). A cone is symmetric if and only if it is linearly isomorphic to the cone of squares

\[K(\mathfrak{J}) := \{x \circ x : x \in \mathfrak{J}\}\]

of a Euclidean Jordan algebra (\mathfrak{J}, \circ). Moreover, $K(\mathfrak{J})$ coincides with the following equivalent sets:

(i) the set \(\{x \in \mathfrak{J} : L_x \text{ is positive semidefinite under } \langle \cdot, \cdot \rangle\};\)

(ii) the set \(\{x \in \mathfrak{J} : \lambda_i(x) \geq 0 \forall i\}\).

For each idempotent $c \in \mathfrak{J}$, the only possible eigenvalues of L_c are $0, \frac{1}{2}$ and 1; see Theorem III.1.3 of [16]. We shall use $\mathfrak{J}(c,0), \mathfrak{J}(c, \frac{1}{2})$ and $\mathfrak{J}(c,1)$ to denote the eigenspaces of L_c corresponding to the eigenvalues $0, \frac{1}{2}$ and 1, respectively. If μ is not an eigenvalue of L_c, then we use the convention $\mathfrak{J}(c, \mu) = \{0\}$.
Theorem 2.10 (Peirce decomposition, Theorem IV.2.1 of [16]). Given a Jordan frame \(\{c_1, \ldots, c_r\} \), the space \(\mathcal{J} \) decomposes into the orthogonal direct sum

\[
\mathcal{J} = \bigoplus_{i=1}^{r} \mathcal{J}_i \oplus \bigoplus_{1 \leq i < j \leq r} \mathcal{J}_{ij},
\]

where \(\mathcal{J}_i := \mathcal{J}(c_i, 1) = \mathbb{R} c_i \) and \(\mathcal{J}_{ij} := \mathcal{J}(c_i, \frac{1}{2}) \cap \mathcal{J}(c_j, \frac{1}{2}) \) for \(i < j \), such that the orthogonal projector onto \(\mathcal{J}_i \) is \(P_{c_i} \), and that onto \(\mathcal{J}_{ij} \) is \(4L_{c_i}L_{c_j} \).

The decomposition of \(x \in \mathcal{J} \) into

\[
x = \sum_{i=1}^{r} x_i c_i + \sum_{1 \leq i < j \leq r} x_{ij}
\]

with \(x_i c_i = P_{c_i}(x) \) and \(x_{ij} = 4L_{c_i}(L_{c_j}(x)) \) is called its Peirce decomposition with respect to the Jordan frame \(\{c_1, \ldots, c_r\} \).

Remark 2.11. It is straightforward to check that if \(\{c_1, \ldots, c_r\} \) is the Jordan frame in a spectral decomposition \(x = \sum \lambda_i(x) c_i \) of \(x \), then the Peirce decomposition of \(x \) with respect to \(\{c_1, \ldots, c_r\} \) coincide with this spectral decomposition.

Remark 2.12. Since both \(L_{c_i} \) and \(P_{c_i} \) are both continuous, it follows that the maps \(x \mapsto x_i \) and \(x \mapsto x_{ij} \) are continuous for each \(i, j \).

We conclude this section with the following result.

Corollary 2.13. For each \(x \in \mathcal{J} \), \(x \in K(\mathcal{J}) \) if and only if \(x_i \) is nonnegative in every Peirce decomposition \(x = \sum_{i=1}^{r} x_i c_i + \sum_{1 \leq i < j \leq r} x_{ij} \).

Proof. The “if” part follows from using a spectral decomposition of \(x \). For the “only if” part, the orthogonality of the direct sum in Peirce decompositions implies that \(x_i (c_i, c_i) = (x, c_i) = (x, c_i \circ c_i) = (L_{c_i}(c_i), c_i) \), and \(x \in K(\mathcal{J}) = \{ y \in \mathcal{J} : \}

3. Smoothing approximation. In [6], Chen and Mangasarian proposed to approximate the plus function \(z^+ := \max\{0, z\} \) by a parametric smoothing function \(p : \mathbb{R} \times \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) such that \(p(z, \mu) \rightarrow z^+ \) as \(\mu \downarrow 0 \). More specifically, the function \(p \) is defined by double integrating a probability density function \(d \) with parameter \(\mu \). In this paper, we are interested in a subclass of the Chen and Mangasarian smoothing function, whose probability density function \(d \) satisfies the following assumptions.

\(A1 \) \(d(t) \) is symmetric and piecewise continuous with finite number of pieces.

\(A2 \) \(E[|t|d(t)] = \int_{-\infty}^{+\infty} |t|d(t) dt < +\infty. \)

It is not difficult to verify that, under assumptions \(A1 \) and \(A2 \), the function \(p \) is the same as defining

\[
p(z, \mu) = \int_{-\infty}^{z} (z - t)d(t, \mu) dt,
\]

where \(d(t, \mu) := \frac{1}{\mu}d(\frac{t}{\mu}) \) (see proof of Proposition 2.1 of [6]). If, in addition, \(d(t) \) has an infinite support, then \(p(z, \mu) \) has the following nice properties.

Proposition 3.1. Let \(d(t) \) satisfy \(A1 \), \(A2 \) and has an infinite support. The following properties hold for the function \(p(z, \mu) \) defined in \(3.1 \).

1. \(p(z, \mu) \) is convex and continuously differentiable with respect to \(z \), and \(p(z, \mu) > z^+ \geq 0 \) for all \(\mu > 0 \).

2. For each \(z \in \mathbb{R} \), the function \(\mu \in \mathbb{R}^+ \mapsto p(z, \mu) \) is Lipschitz continuous; moreover, the Lipschitz constant is uniformly bounded above over all \(z \in \mathbb{R} \).
3. \(\lim_{z \to -\infty} p(z, \mu) = 0, \lim_{z \to \infty} p(z, \mu)/z = 1, 0 < p'(z, \mu) < 1, \) and \(\mu'(-z, \mu) = 1 - p'(z, \mu) \), for all \(\mu > 0 \).

4. For each \(\mu \geq 0 \) and each \(b > 0 \), \(p(z, \mu) = b \) has a unique solution.

Proof. The statements (1), (3) and (4) were proved in Proposition 1 of [4], and (2) was proved in Proposition 1 of [5].

The following are two well-known smoothing functions derived from probability density functions with finite support and satisfy assumptions (A1) and (A2).

Example 3.2. Neural network smoothing function [6].

\[
p(z, \mu) = z + \mu \log(1 + e^{-z}),
\]

where \(d(t) = e^{-t}/(1 + e^{-t})^2 \).

Example 3.3. Chen-Harker-Kanzow-Smale (CHKS) function [2, 28, 40].

\[
p(z, \mu) = (z + \sqrt{z^2 + 4\mu})/2,
\]

where \(d(t) = 2/(t^2 + 4)^{3/2} \).

Throughout this paper, we shall assume that \(p(z, \mu) \) has all the properties in Proposition 3.1.

From the smoothing approximation function \(p \), we define the smooth approximation of the Euclidean projector \(\text{Proj}_K(z) \) as the Löwner operator

\[
p_\gamma(z, \mu) : z \in \mathcal{B} \mapsto \sum_{i=1}^{r} p(\lambda_i(z), \mu) c_i,
\]

where \(z = \sum_{i=1}^{r} \lambda_i(z) c_i \) is a spectral decomposition of \(z \). For instance, the Löwner operator obtained from the CHKS smoothing function is

\[
p_\gamma(z, \mu) = (z + \sqrt{z^2 + 4\mu})/2,
\]

where \(\sqrt{x} \) denotes the unique \(y \in \text{int}(K) \) with \(y^2 = x \). We list below some properties of \(p_\gamma(z, \mu) \) that are useful in this paper.

Proposition 3.4. The following statements are true:

(a) \(\lim_{\mu \to 0} p_\gamma(z, \mu) = \text{Proj}_K(z) \).

(b) \(p_\gamma(z, \mu) \) is continuously differentiable with respect to \(z \).

(c) For each \(z \in \mathcal{B}, \mu \in \mathbb{R}_+ \) \(\mapsto p_\gamma(z, \mu) \) is Lipschitz continuous; moreover, the Lipschitz constant is uniformly bounded above over all \(z \in \mathcal{B} \).

(d) For each \(\mu > 0 \), the Jacobian of the map \(z \mapsto p_\gamma(z, \mu) \) is

\[
w \mapsto \sum_{i=1}^{r} d_i w_i c_i + \sum_{1 \leq i < j \leq r} d_{ij} w_{ij},
\]

where \(z = \sum_{i=1}^{r} \lambda_i(z) c_i \) is a spectral decomposition, \(w = \sum_{i=1}^{r} w_i c_i + \sum_{1 \leq i < j \leq r} w_{ij} \) is the Peirce decomposition, \(d_i = p'(\lambda_i(z), \mu) \) and

\[
d_{ij} = \begin{cases} \frac{p(\lambda_i(z), \mu) - p(\lambda_j(z), \mu)}{\lambda_i(z) - \lambda_j(z)} & \text{if } \lambda_i(z) \neq \lambda_j(z), \\ p'(\lambda_i(z), \mu) & \text{if } \lambda_i(z) = \lambda_j(z). \end{cases}
\]

Moreover, \(d_i, d_{ij} \in (0, 1) \).
(e) For each $\mu \geq 0$ and each $b > K_0$, $p_3(z, \mu) = b$ has a unique solution.

Proof. (a) Follows from $\text{Proj}_K(z) = \sum_{i=1}^n \lambda_i(z) c_i$ and the special case $K = \mathbb{R}_+$. (b) Follows from Theorem 3.2 of [42] and corresponding property of p. (c) Straightforward from the definition of p_3 and corresponding property of p. (d) See [31, p. 74]. (e) Let $b = \sum_{i=1}^k \lambda_i c_i$ be a spectral decomposition of type I. Note that z solves $p_3(z, \mu) = b$ if and only if the type I spectral decomposition of z is $\sum_{i=1}^k \beta_i c_i$ with $p(\beta_i, \mu) = \lambda_i$.

Since $\text{Proj}_K(z)$ and $\text{Proj}_{K^\#}(-z)$ can be approximated by $p_3(z, \mu)$ and $p_3(-z, \mu)$, respectively, the NME (1.1) can be approximated by the following parametric equation, called the Smooth Normal Map Equation (SNME):

$$ (1 - \mu) F(p_3(z, \mu)) - p_3(-z, \mu) + \mu b = 0, \quad (3.2) $$

where $b > K_0$, $\mu \in (0, 1]$. When $\mu = 1$, the SNME becomes

$$ -p_3(-z, \mu) + b = 0, $$

which has a unique solution by the above proposition. On the other hand, when $\mu = 0$, the SNME reduces to the NME (1.1). Therefore, if there exists a trajectory $\{z(\mu) : \mu \in (0, 1]\}$ from the unique solution at $\mu = 1$ to a solution at $\mu = 0$, we can apply standard homotopy techniques to find the solution of the NME, and hence a solution of $\text{NCP}_K(F)$. In [4], the uniform P-property is a sufficient condition to ensure the existence of such trajectory when K is polyhedral. In the next section, we study similar P-type properties.

4. P-type properties.

4.1. Functions on \mathbb{R}^n. In the theory of LCPs [13], the P-property of a matrix plays a very important role and it can be defined in a number of ways. Here, we summarize below several known equivalent conditions for a matrix $M \in \mathbb{R}^{n \times n}$ to be a P-matrix:

1. For every nonzero $x \in \mathbb{R}^n$, there exists an index $i \in \{1, 2, \ldots, n\}$ such that $x_i(Mx)_i > 0$.

2. Every principal minor of M is positive [13].

3. LCP(M, q) has a unique solution for every $q \in \mathbb{R}^n$ [34].

4. The solution map of LCP(M, q) is locally Lipschitzian with respect to data (M, q) [19].

The following lemma illustrates another equivalent characterization of P-property of a matrix.

Lemma 4.1. A matrix $M \in \mathbb{R}^{n \times n}$ is a P-matrix if and only if

$$ \exists \alpha > 0, \forall d_1, \ldots, d_n \geq 0, \forall x \in \mathbb{R}^n \quad \left\| Mx + \sum_{i=1}^n d_i x_i e_i \right\| \geq \alpha \|x\|, \quad (4.1) $$

where e_i denotes the i-th standard unit vector of \mathbb{R}^n.

Proof. “Only if”: Suppose M is a P-matrix. Then the continuity of $x \mapsto \max_i x_i(Mx)$, and the compactness of $\{x \in \mathbb{R}^n : \|x\| = 1\}$ implies

$$ \alpha := \inf \{\max_i x_i(Mx)_i : x \in \mathbb{R}^n, \|x\| = 1\} > 0. $$
Thus for any $0 \neq x \in \mathbb{R}^n$, there is an index i with $x_i(Mx)_i \geq \alpha \|x\|^2 > 0$, whence for any $d_1, \ldots, d_n \geq 0$,

$$
\left\|Mx + \sum_{j=1}^n d_j x_j x_j \right\| \geq \|(Mx)_i + d_i x_i\| \geq \|Mx_i\| \geq \alpha \frac{\|x\|^2}{|x_i|} \geq \alpha \|x\|.
$$

"If": Suppose M satisfies (4.1). For any $0 \neq x \in \mathbb{R}^n$, the norm $\|Mx + \sum d_j x_j e_j\|$ is minimized over $(d_1, \ldots, d_n) \in \mathbb{R}_+^n$ at

$$d_i = \begin{cases}
0 & \text{if } x_i(Mx)_i \geq 0, \\
0 - \frac{(Mx)_i}{x_i} & \text{if } x_i(Mx)_i < 0,
\end{cases}
$$

with minimum value $\sqrt[2]{\sum_{i:x_i(Mx)_i \geq 0}(Mx)_i^2}$. With the $\alpha > 0$ in (4.1), it then follows that $\sum_{i:x_i(Mx)_i \geq 0}(Mx)_i^2 \geq \alpha^2 \|x\|^2$ for all $x \in \mathbb{R}^n$. In particular, replacing x by $x - \varepsilon \Delta x$ with $(\Delta x)_i = \text{sgn}((Mx)_i)$, we have

$$\sum_{i \in I_\varepsilon} (M(x - \varepsilon \Delta x))_i^2 + \sum_{i \in I_\varepsilon} (M(x - \varepsilon \Delta x))_i^2 \geq \alpha^2 \|x - \varepsilon \Delta x\|^2,$$

where $I_\varepsilon := \{i : (x - \varepsilon \Delta x)_i(M(x - \varepsilon \Delta x))_i \geq 0\}$ and $\varepsilon > 0$. It is straightforward to check that if x is sufficiently small, we have $i \in I_\varepsilon$ and $(Mx)_i \neq 0$ if and only if $x_i(Mx)_i > 0$. Therefore, the above inequality can be rewritten as

$$\sum_{i:x_i(Mx)_i > 0} (M(x - \varepsilon \Delta x))_i^2 + \sum_{i \in I_\varepsilon} (\varepsilon M \Delta x)_i^2 \geq \alpha^2 \|x - \varepsilon \Delta x\|^2,$$

Taking limit $\varepsilon \downarrow 0$, we deduce $\sum_{i:x_i(Mx)_i > 0}(Mx)_i^2 \geq \alpha^2 \|x\|^2$. Since the right hand side is positive when $x \neq 0$, we conclude that M is a P-matrix.

The P-property has also been extensively studied for the nonlinear functions in \mathbb{R}^n.

Definition 4.2 (See, e.g., [15]). Let $\Omega \subset \mathbb{R}^n$ be open and $F : \Omega \to \mathbb{R}^n$. The function is said to be

- a P-function over Ω if for all $x, y \in \Omega$, $x \neq y$, there is an index $i \in \{1, \ldots, n\}$ such that

$$(x_i - y_i)(F_i(x) - F_i(y)) > 0;$$

- a uniform P-function with modulus $\gamma > 0$ over Ω if for all $x, y \in \Omega$ there is an index $i \in \{1, \ldots, n\}$ such that

$$(x_i - y_i)(F_i(x) - F_i(y)) \geq \gamma \|x - y\|^2.$$

It is easy to see that, when F is affine, say $F(x) = Mx + q$ for some matrix $M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$, the concept of P-function and uniform P-function coincide with the P-property of M. However, the uniform P-property is strictly stronger than the P-property in general. For more related discussion on P-functions and uniform P-functions, we refer the reader to [15].

Motivated by the new characterization for the P-property of a matrix, we introduce the following new P-type property for functions $F : \Omega \to \mathbb{R}^n$ defined on an open domain $\Omega \subset \mathbb{R}^n$.

Property 4.3. There is a constant \(\alpha > 0 \) such that for any nonnegative \(d_1, \ldots, d_n \) and any \(x, y \in \Omega \),
\[
\left\| F(x) - F(y) + \sum_{i=1}^{n} d_i (x_i - y_i) e_i \right\| \geq \alpha \| x - y \|,
\]
where \(e_i \) denotes the \(i \)-th standard unit vector of \(\mathbb{R}^n \).

The nonlinear counter-part to Lemma 4.1 is given in the following proposition.

Proposition 4.4. Let \(F : \Omega \rightarrow \mathbb{R}^n \) be a continuous function defined over the open domain \(\Omega \subset \mathbb{R}^n \). It holds that

(a) If \(F \) is a uniform \(P \)-function, then it satisfies Property 4.3.

(b) If \(F \) satisfies Property 4.3, then it is a \(P \)-function.

Proof. The proofs of both statements are similar to the argument used in the proof of Lemma 4.1. \(\square \)

It is well known that NCP(\(F \)) has a unique solution if \(F \) is a continuous uniform \(P \)-function over the open domain \(\Omega \subset \mathbb{R}^n \); see, e.g., [24, Theorem 3.9]. Our next result shows the same conclusion when \(F \) satisfies Property 4.3.

Proposition 4.5. If \(F \) is a continuous function over the open domain \(\Omega \subset \mathbb{R}^n \), satisfying Property 4.3, then NCP(\(F \)) has a unique solution.

Proof. “Existence:” In view of Theorem 3.4 in [33], it suffices to show that for any \(M > 0 \), there is a constant \(r > 0 \) such that
\[
\max_{1 \leq i \leq n} \frac{x_i F_i(x)}{\| x \|} \geq M,
\]
for all \(\| x \| \geq r \) and \(x \in \mathbb{R}^n_+ \). Suppose \(M > 0 \) is given, and let \(r_0 = \max\{2M\sqrt{n}/\alpha, 3/4\} \).

For each \(x \in \mathbb{R}^n_+ \), we define an index set \(I(x) := \{ i : x_i \geq r_0 \} \) and define a corresponding vector \(\tilde{x} \) as
\[
\tilde{x}_i = \begin{cases} 0 & \text{if } i \in I(x), \\ x_i & \text{if } i \notin I(x). \end{cases}
\]

Suppose that \(\| x \| > \sqrt{n}r_0 \). Then the index set \(I(x) \) is nonempty. For some \(\epsilon \in (0, 1) \) to be determined later, define another vector \(y \) as
\[
y_i = \begin{cases} \tilde{x}_i (= 0) & \text{if } i \in I(x), \\ \tilde{x}_i + \epsilon \sgn(F_i(x) - F_i(\tilde{x})) & \text{if } i \notin I(x). \end{cases}
\]

We only consider \(\epsilon \) sufficiently small so that \(y \in \Omega \). It is straightforward to deduce from this definition that \(\| y - \tilde{x} \| \leq \sqrt{n}\epsilon \). Moreover, from the assumption \(\| x \| > \sqrt{n}r_0 \), we deduce that \(\| x - \tilde{x} \| \geq r_0 \), whence \(\| x - y \| \geq r_0 - \sqrt{n}\epsilon \). Fix \(\epsilon \) sufficiently small so that \((F_i(x) - F_i(\tilde{x}))(F_i(x) - F_i(y)) > 0 \) whenever \(F_i(x) - F_i(\tilde{x}) \neq 0 \) and \(|F_i(x) - F_i(y)| < \sqrt{n}(r_0 - \sqrt{n}\epsilon) \leq \alpha \| x - y \| \) whenever \(F_i(x) - F_i(\tilde{x}) = 0 \); such \(\epsilon \) exists by the continuity of \(F \). Now, we let
\[
d_i := \begin{cases} 0 & \text{if } i \in I(x) \text{ and } x_i (F_i(x) - F_i(\tilde{x})) \geq 0, \\ -\frac{F_i(x) - F_i(y)}{x_i} & \text{if } i \in I(x) \text{ and } x_i (F_i(x) - F_i(\tilde{x})) < 0, \\ 0 & \text{if } i \notin I(x) \text{ and } (F_i(x) - F_i(\tilde{x})) = 0, \\ \frac{F_i(x) - F_i(y)}{\epsilon \sgn(F_i(x) - F_i(\tilde{x}))} & \text{if } i \notin I(x) \text{ and } (F_i(x) - F_i(\tilde{x})) \neq 0. \end{cases}
\]
Then \(d_i \geq 0 \). By Property 4.3, there is an index \(i \) such that \(|F_i(x) - F_i(y) + d_i(x_i - y_i)| \geq \frac{\alpha}{\sqrt{n}}\|x - y\|\). Moreover, from the construction of \(d_i \) and the choice of \(\varepsilon \), it must happen that \(i \in I(x), d_i = 0 \) and \(F_i(x) - F_i(y) > 0 \), whence

\[
F_i(x) - F_i(y) \geq \frac{\alpha}{\sqrt{n}}\|x - y\|. \tag{4.2}
\]

It is straightforward to deduce from its definition that \(\|y\| \leq \sqrt{n}(r_0 + \varepsilon) \). Now, suppose further that

\[
\|x\| \geq \max \left\{ 3\sqrt{n}(r_0 + 1), \frac{144n}{\alpha^2}M^2, \frac{16n}{\alpha^2}M_i^2 \right\}, \tag{4.3}
\]

where \(M_i := \max\{\|F(z)\| : z \in [-1, r_0 + 1]^n\} \). Then \(\|x\| \leq \|y\| + \|x - y\| \leq \sqrt{n}(r_0 + \varepsilon) + \|x - y\| \) implies that \(\|x - y\| \geq 2\sqrt{n}(r_0 + 1) \geq 2\|y\|\), and subsequently,

\[
\|x - y\| \geq \frac{2}{3}\|x\|. \tag{4.4}
\]

In the case \(x_i \geq \frac{1}{2}\|x\|^\frac{1}{2} \), we obtain from (4.2) that \(F_i(x)x_i \geq \frac{\alpha}{\sqrt{n}}\|x - y\| + F_i(y)x_i \geq \frac{\alpha}{\sqrt{n}}\|x - y\| \geq \frac{\alpha}{\sqrt{n}}\|x\|. \) Hence, together with (4.3) and (4.4), we conclude that \(F_i(x)x_i \geq \frac{\alpha}{\sqrt{n}}\|x\| \geq \frac{\alpha}{\sqrt{n}}\|x\| \geq M\|x\| \).

In the case \(r_0 \leq x_i < \frac{1}{2}\|x\|^\frac{1}{2} \), we again obtain from (4.2) that \(F_i(x)x_i \geq \frac{\alpha}{\sqrt{n}}\|x - y\| \geq \frac{\alpha}{\sqrt{n}}\|x\|^\frac{1}{2} \) and the definition of \(r_0 \), the following example shows that this is not always true in general. Therefore, our \(P \)-type property lies between the concept of \(P \)-property and uniform \(P \)-property.

Example 4.6. Let \(\Omega = (1, \infty)^2 \) and \(F : \Omega \to \mathbb{R}^2 \) be defined as:

\[
F(x_1, x_2) := (x_1^2 + x_2 - x_1^2 + x_2^2).
\]

Given any \(\alpha \in (0, 1) \), we take \(x = (\frac{4}{\alpha}, \frac{4}{\alpha}) \) and \(y = (\frac{4}{\alpha} - \frac{a}{\alpha}, -\frac{4}{\alpha} - 1) \). It is easy to verify that \(x, y \in \Omega \) and

\[
\max_{i=1,2} (x_i - y_i)(F_i(x) - F_i(y)) < \alpha\|x - y\|^2.
\]

Therefore, \(F \) is not a uniform \(P \)-function over \(\Omega \).

Fix any \(x, y \in \Omega \) and any \(d_1, d_2 \geq 0 \). If \((x_1 - y_1)(x_2 - y_2) \geq 0 \), then

\[
\begin{align*}
& \left\| F(x) - F(y) + \sum_{i=1}^2 d_i(x_i - y_i) e_i \right\|^2 \\
\geq & \left| (F_1(x) - F_1(y)) + d_1(x_1 - y_1) \right|^2 \\
= & \left\| \frac{\partial F_1(x_0, y_0)}{\partial x_1}(x_1 - y_1) + \frac{\partial F_1(x_0, y_0)}{\partial x_2}(x_2 - y_2) + d_1(x_1 - y_1) \right\|^2 \\
\geq & (2 + d_1)^2(x_1 - y_1)^2 + (x_2 - y_2)^2 \\
\geq & \|x - y\|^2,
\end{align*}
\]

\[d_i \geq 0.\]
where \(x_\theta = x_2 + \theta(x_1 - x_2) \) and \(y_\theta = y_2 + \theta(y_1 - y_2) \) for some \(\theta \in (0, 1) \). Similarly, if \((x_1 - y_1)(x_2 - y_2) < 0 \), we have

\[
\frac{1}{2} \left\| (F(x) - F(y)) + \frac{2}{x_1 - y_1} \right\|^2 \\
\geq \left| \left(F_2(x) - F_2(y) \right) + \frac{2}{x_1 - y_1} \right|^2 \\
= \left| \frac{\partial F(x, y_\theta)}{\partial x_1}(x_1 - y_1) + \frac{\partial F(x, y_\theta)}{\partial x_2}(x_2 - y_2) \right|^2 \\
\geq 9(x_1 - y_1)^2 + (2 + 2d_2)^2(x_2 - y_2)^2 \\
\geq \|x - y\|^2.
\]

Combining the above two cases, we have shown that \(F \) satisfies Property 4.3.

So far, we have only discussed the \(P \)-property defined on the space \(\mathbb{R}^n \). In the remaining of this section, we investigate the \(P \)-property for transformations in the setting of \(LCP_K \) and \(NCP_K \), when \(K \) is a general symmetric cone.

4.2. Functions on Euclidean Jordan algebras

Motivated by the significance of \(P \)-matrices in the theory of \(LCP \), Gowda et al. [22] introduced the following \(P \)-property for linear transformations defined over Euclidean Jordan algebras \(\mathfrak{J} \) to study \(LCP_K \), where \(K \) is the cone of squares of \(\mathfrak{J} \).

Definition 4.7. A linear transformation \(L : \mathfrak{J} \rightarrow \mathfrak{J} \) is said to possess the \(P \)-property if

- \(x \) and \(L(x) \) operator commute\(^1\) and \(x \circ L(x) \leq_K 0 \implies x = 0 \).

For the convenience of our discussion, we introduce several more definitions.

Definition 4.8 (See, e.g., [22]). A linear transformation \(L : \mathfrak{J} \rightarrow \mathfrak{J} \) is said to possess

1. the \(R_0 \)-property if \(x \geq_K 0, L(x) \geq_K 0 \) and \(\langle x, L(x) \rangle = 0 \implies x = 0 \);
2. the \(Q \)-property if for every \(q \in \mathfrak{J} \), \(LCP_K(L, q) \) has a solution;
3. the globally uniquely solvable property (\(\text{GUS-property, for short} \)) if for all \(q \in \mathfrak{J} \), \(LCP_K(L, q) \) has a unique solution.

It is not too difficult to see that if a linear transformation \(L \) has the \(P \)-property, then it has the \(R_0 \)-property. Moreover, the \(P \)-property implies the \(Q \)-property [22, Theorem 12]. Recall that \(LCP(M, q) \) has a unique solution for any \(q \in \mathbb{R}^n \) if \(M \) is a \(P \)-matrix. Unfortunately, this result can not be carried over to \(LCP_K(L, q) \); i.e., the \(\text{GUS-property} \) may not hold even if \(L \) has the \(P \)-property. However, the converse is always true.

Proposition 4.9 (Theorem 14 of [22]). If a linear transformation \(L : \mathfrak{J} \rightarrow \mathfrak{J} \) has the \(\text{GUS-property} \), then it has the \(P \)-property.

A natural extension of (4.1) to linear transformations over \(\mathfrak{J} \) is the following property:

Property 4.10. There exists \(\alpha > 0 \) such that for any nonnegative \(d_1, \ldots, d_r \) and any \(x \in \mathfrak{J} \),

\[
\left\| L(x) + \sum_{i=1}^r d_i \lambda_i(x)c_i \right\| \geq \alpha \|x\|
\]

for any spectral decomposition \(x = \sum_{i=1}^r \lambda_i(x)c_i \).

\(^1\)See Remark 2.8.
The following proposition shows that the above property is equivalent to the P-property.

Proposition 4.11. A linear transformation $L: \mathfrak{J} \to \mathfrak{J}$ has the P-property if and only if it satisfies Property 4.10.

Proof. “Only if”: We shall prove the contra-positive.

Suppose L does not satisfy Property 4.10. Let $\{\alpha_k\}$ be a positive sequence converging to 0. Then for each α, there exist an $x^k \in \mathfrak{J}$ and a sequence d_i^k, \ldots, d_i^k of nonnegative real numbers such that

$$\|L(x^k) + \sum_{i=1}^{r} d_i^k \lambda_i(x^k) c_i^k\| < \alpha \|x^k\|,$$

where $x^k = \sum_{j=1}^{r} \lambda_j(x^k) c_j^k$ is a spectral decomposition of x^k. Without any loss of generality, we may assume, by scaling if necessary, that $\|x^k\| = 1$. Thus $\{x^k\}$ has a convergent subsequence, and we may assume, by taking a subsequence if necessary, that $x^k \to x$. Subsequently, we deduce that $\lim_{k \to \infty} \sum_{i=1}^{r} d_i^k \lambda_i(x^k) c_i^k = -\lim_{k \to \infty} L(x^k) = -L(x)$. Since $\sum_{i=1}^{r} d_i^k \lambda_i(x^k) c_i^k$ operator commutes with x^k, it follows that $L(x)$ operator commutes with x. Moreover,

$$0 \geq K - \lim_{k \to \infty} \sum_{i=1}^{r} d_i^k \lambda_i(x^k)^2 c_i^k = \lim_{k \to \infty} x \circ L(x^k) = x \circ L(x).$$

Thus L does not have the P-property.

“If”: The proof for this part is similar to the argument in the proof of Lemma 4.1. Suppose L satisfies Property 4.10. Fix any arbitrary $0 \neq x \in \mathfrak{J}$ with x and $L(x)$ operator commuting, and any spectral decompositions $x = \sum_{i=1}^{r} x_i c_i$ and $L(x) = \sum_{i=1}^{r} \lambda_i c_i$. Consider the perturbation $x - \epsilon \Delta x$ with $\Delta x = \sum_{i=1}^{r} \text{sgn}(l_i) c_i$. Let $L(\Delta x) = \sum_{i=1}^{r} \Delta l_i c_i + \sum_{1 \leq i < j \leq r} \Delta l_{ij}$ be a Peirce decomposition. For each $\epsilon > 0$, we have

$$\alpha^2 \|x - \epsilon \Delta x\|^2 \leq \min_{(d_1, \ldots, d_r) \in \mathbb{R}_+^r} \left\| L(x - \epsilon \Delta x) + \sum_{i=1}^{r} d_i (x_i - \epsilon \text{sgn}(l_i)) c_i \right\|^2$$

$$= \min_{(d_1, \ldots, d_r) \in \mathbb{R}_+^r} \left\| \sum_{i=1}^{r} \left[(l_i - \epsilon \Delta l_i) + d_i (x_i - \epsilon \text{sgn}(l_i)) \right] c_i + \sum_{1 \leq i < j \leq r} \epsilon \Delta l_{ij} \right\|^2$$

$$= \sum_{i \in I_x} (l_i - \epsilon \Delta l_i)^2 + \sum_{i \in \mathbb{I}_x} (l_i - \epsilon \Delta l_i)^2 + \epsilon^2 \sum_{1 \leq i < j \leq r} \Delta l_{ij},$$

where $I_x := \{ i : (x_i - \epsilon \text{sgn}(l_i))(l_i - \epsilon \Delta l_i) \geq 0 \}$, and the infimum is achieved with

$$d_i = \begin{cases} 0 & \text{if } (x_i - \epsilon \text{sgn}(l_i))(l_i - \epsilon \Delta l_i) \geq 0, \\ \frac{l_i - \epsilon \Delta l_i}{x_i - \epsilon \text{sgn}(l_i)} & \text{if } (x_i - \epsilon \text{sgn}(l_i))(l_i - \epsilon \Delta l_i) < 0. \end{cases}$$

Since the operator $x \mapsto L_x$ is linear, whence continuous, we get

$$L_{L(x)} L_x = -\lim_{k \to \infty} L_{x} \sum_{i=1}^{r} d_i^k \lambda_i(x) c_i^k = -\lim_{k \to \infty} L_{x} L_{\sum_{i=1}^{r} d_i^k \lambda_i(x) c_i^k} L_{x} = L_x L_{L(x)}.$$
When ε is sufficiently small, we have $i \in I_\varepsilon$ and $l_i \neq 0$ if and only if $x_i l_i > 0$. Therefore, the above inequality is equivalent to

$$\sum_{i:x_i l_i > 0} (l_i - \varepsilon \Delta l_i)^2 + \sum_{i \in I_\varepsilon} \varepsilon^2 \Delta l_i^2 + \varepsilon^2 \left| \sum_{1 \leq i < j \leq r} \Delta l_{ij} \right|^2 \geq \alpha^2 \|x - \varepsilon \Delta x\|^2.$$

Taking limit $\varepsilon \downarrow 0$, we deduce $\sum_{i:x_i l_i > 0} l_i^2 \geq \alpha^2 \|x\|^2$, whence the set $\{i : x_i l_i > 0\}$ is nonempty whenever $x \neq 0$. Thus L has the P-property.

Corollary 4.12. Given a linear transformation $L : \mathfrak{J} \rightarrow \mathfrak{J}$, the following statements hold:

(a) if L satisfies Property 4.10, then it has the R_0- and Q-properties.

(b) if L has the GUS-property, then it satisfies Property 4.10.

Remark 4.13. The nonlinear counter-part of Property 4.10 is: there exists $\alpha > 0$ such that for any nonnegative d_1, \ldots, d_r and any $x, y \in \mathfrak{J}$,

$$\left\| F(x) - F(y) + \sum_{i=1}^r d_i \lambda_i (x - y) c_i \right\| \geq \alpha \|x - y\|,$$

for any spectral decomposition $x - y = \sum_{i=1}^r \lambda_i (x - y) c_i$. At this stage, we do not know whether this is related to the P-properties in [43] for nonlinear maps.

5. Boundedness and uniqueness of trajectory. In this section, we aim to extend the continuation method in [4] for the NCP to the setting of NCP$_K$(F), where K is the cone of squares of the Euclidean Jordan algebra \mathfrak{J}, under a suitable P-type property on the map $F : \Omega \rightarrow \mathfrak{J}$ defined over an open domain $\Omega \subset \mathfrak{J}$. In particular, we show that this property provides a sufficient condition to ensure the nonsingularity of the Jacobian of the homotopy function, the boundedness and uniqueness of the solution trajectory.

Property 5.1. There exists $\alpha > 0$ such that for any $d_1, \ldots, d_r \geq 0$, any $d_{ij} \geq 0$, any Jordan frame $\{c_1, \ldots, c_r\}$, and every $x, y \in \Omega$

$$\left\| F(x) - F(y) + \sum_{i=1}^r d_i (x_i - y_i) c_i + \sum_{1 \leq i < j \leq r} d_{ij} (x_{ij} - y_{ij}) \right\| \geq \alpha \|x - y\|,$$

where $x = \sum_{i=1}^r x_i c_i + \sum_{1 \leq i < j \leq r} x_{ij}$ and $y = \sum_{i=1}^r y_i c_i + \sum_{1 \leq i < j \leq r} y_{ij}$ are Peirce decompositions.

It is clear that Property 5.1 is a strengthening of Property 4.10. On the other hand, it can be shown that Property 5.1 is implied by the uniform Cartesian P-property.

Definition 5.2. A map $F : \Omega \rightarrow \mathfrak{J}$ defined on an open domain Ω is said to have the uniform Cartesian P-property if there exists $\rho > 0$ such that for any $x, y \in \Omega$

$$\max_{1 \leq v \leq \kappa} ((x - y)_v, (F(x) - F(y))_v) \geq \rho \|x - y\|^2,$$

Proposition 5.3. If $F : \Omega \rightarrow \mathfrak{J}$ has the uniform Cartesian P-property, then it satisfies Property 5.1.

Proof. Assume that F has the uniform Cartesian P-property. Then for any $x, y \in \Omega$ there exists $v \in \{1, \ldots, \kappa\}$ such that

$$((x - y)_v, (F(x) - F(y))_v) \geq \rho \|x - y\|^2.$$

Let $c_1^v, \ldots, c_v^v \in \mathcal{J}_v$ be any Jordan frame and let $x_v = \sum_{i=1}^{r_v} x_i^v + \sum_{1 \leq i < j \leq v} x_{ij}^v$, $y_v = \sum_{i=1}^{r_v} y_i^v + \sum_{1 \leq i < j \leq v} y_{ij}^v$, $F(x)_v = \sum_{i=1}^{r_v} f_i^v x_i^v + \sum_{1 \leq i < j \leq v} f_{ij}^v$ and $F(y)_v = \sum_{i=1}^{r_v} g_i^v x_i^v + \sum_{1 \leq i < j \leq v} g_{ij}^v$ be Peirce decompositions. Then it follows from the inequality above that

$$\sum_{(i,j) \in I} (x_i^v - y_i^v) (f_i^v - g_i^v) + \sum_{1 \leq i < j \leq v} \langle x_{ij}^v - y_{ij}^v, f_{ij}^v - g_{ij}^v \rangle \geq \langle (x - y)_v, (F(x) - F(y))_v \rangle \geq \rho \|x - y\|^2.$$

Thus either there exists an index i such that $(x_i^v - y_i^v) (f_i^v - g_i^v) \geq \frac{\rho}{r_v} \|x - y\|^2$, or there exists a pair of indices (i, j) such that $\langle x_{ij}^v - y_{ij}^v, f_{ij}^v - g_{ij}^v \rangle \geq \frac{\rho}{r_v} \|x - y\|^2$. In the former case, we have

$$\min_{d_i, d_{ij} \geq 0} \left\| F(x) - F(y) + \sum_{i=1}^{r_v} d_i (x_i - y_i) c_i + \sum_{1 \leq i < j \leq v} d_{ij} (x_{ij} - y_{ij}) \right\| \geq \min_{d_i, d_{ij} \geq 0} \left\| F_0(x) - F_0(y) + \sum_{i=1}^{r_v} d_i^0 (x_i^v - y_i^v) c_i + \sum_{1 \leq i < j \leq v} d_{ij}^0 (x_{ij}^v - y_{ij}^v) \right\| \geq \left(\sum_{i=1}^{r_v} \min_{d_i \geq 0} \left\| F_{ij}^v - g_{ij}^v \right\|^2 + \sum_{1 \leq i < j \leq v} \min_{d_{ij} \geq 0} \left\| F_{ij}^v - g_{ij}^v \right\|^2 \right)^{1/2} \geq \frac{\rho}{r_v} \|x - y\|. $$

The latter case is similarly established.

We now return to the problem $\text{NCP}_K(F)$, where $F : \Omega \to \mathcal{J}$ is a continuously differentiable function defined on an open domain Ω containing K. Let $H : \mathcal{J} \times \mathbb{R}_+ \to \mathcal{J}$ be defined by

$$(z, \mu) \mapsto (1 - \mu) F(p_3(z, \mu)) - p_3(-z, \mu) + \mu b,$$

where $p_3(z, \mu)$ is the smoothing approximation of $\text{Proj}_K(z)$. Recall that the SNME (3.2) is given by $H(z, \mu) = 0$, where $b > K$, $\mu \in (0, 1]$.

Let S denote the set $\{(z, \mu) \in \mathcal{J} \times (0, 1] : H(z, \mu) = 0\}$. Define the solution path T as the connected component of S emanating from the unique solution of $H(z, 1) = 0$. In this section, we show that T forms a smooth and bounded trajectory that is monotone with respect to μ; i.e., there exists a continuously differentiable and bounded function $t \in I \mapsto [z(t), t : t \in I]$ on some interval $I \subseteq \mathbb{R}$ such that $T = \{(z(t), \mu(t)) : t \in I\}$ and $t \mapsto \mu(t)$ is monotone. Thus, there exists at least a limit
point as \(\mu \) is reduced to zero along the trajectory. We further show that every limit point is a solution of the NME (1.1). The boundedness of the solution trajectory is studied first.

Proposition 5.4. Let \(S_{c, \delta} \) denote the level set
\[
\{(z, \mu) \in \mathbb{R} \times (0, 1 - \delta) : \|H(z, \mu)\| \leq c\}.
\]
If \(F \) satisfies Property 5.1, then for all \(c \) the level set \(S_{c, \delta} \) is bounded for each \(\delta > 0 \). If, in addition, \(c < \lambda_c(b) \), then the level set \(S_{c, 0} \) is also bounded.

Proof. Suppose on the contrary that \(S_{c, \delta} \) is unbounded for some \(c \) and some \(\delta > 0 \). Then there exists an unbounded sequence \(\{z^k\} \) such that \(\|H(z^k, \mu_k)\| \leq c \) for some \(\mu_k \in (0, 1 - \delta) \).

For each \(k \), let \(z^k = \sum_{i=1}^r z^k_i c_i^k \) be a spectral decomposition of \(z^k \). Denote by \(x^k \) and \(y^k \), respectively, \(p^c(z^k, \mu_k) \) and \(p^c(-z^k, \mu_k) \). Then \(x^k = \sum_{i=1}^r x^k_i c_i^k \) and \(y^k = \sum_{i=1}^r y^k_i c_i^k \), with \(x^k_i = p(z^k_i, \mu_k) > 0 \) and \(y^k_i = p(-z^k_i, \mu_k) > 0 \) (see Proposition 3.1), are spectral decompositions. Let \(b = \sum_{i=1}^r b_i^k c_i^k + \sum_{1 \leq i < j \leq r} b_{ij}^k \) and \(H(z^k, \mu_k) = \sum_{i=1}^r h_i^k c_i^k + \sum_{1 \leq i < j \leq r} h_{ij}^k \) be Peirce decompositions.

If the sequence \(\{x^k\} \) is bounded, then we deduce from \(\|H(z^k, \mu_k)\| \leq c \) that the sequence \(\{y^k\} \) is bounded, so that \(\|z^k\|^2 \leq \|x^k\|^2 + \|y^k\|^2 \) for all \(k \) results in a contradiction with the unboundedness of \(\{z^k\} \). Thus the index set \(I := \{i : \{x^k_i\} \text{ is unbounded}\} \) is nonempty.

Consider the bounded sequence \(\{u_k := \sum_{i \in I} x^k_i c_i^k\} \). Let \(F(x^k) - F(u^k) = \sum_{i=1}^r (F(x^k) - F(u^k))_i c_i^k + \sum_{1 \leq i < j \leq r} (F(x^k) - F(u^k))_{ij} \) be a Peirce decomposition. Consider another bounded sequence
\[
\left\{ v^k := u^k + \sum_{i \notin I} (F(x^k) - F(u^k))_i c_i^k + \sum_{1 \leq i < j \leq r} (F(x^k) - F(u^k))_{ij} \|F(x^k) - F(u^k)\| \right\}.
\]
Let \(F(x^k) - F(v^k) = \sum_{i=1}^r (F(x^k) - F(v^k))_i c_i^k + \sum_{1 \leq i < j \leq r} (F(x^k) - F(v^k))_{ij} \) be a Peirce decomposition. For \(i \in I \), let \(d_i^k = \max \left\{ 0, -\frac{(F(x^k) - F(u^k))_i}{x^k_i} \right\} \); for \(i \notin I \), let \(d_i^k = \|F(x^k) - F(u^k)\| \). Let \(d_{ij}^k = \|F(x^k) - F(u^k)\| \) for \(1 \leq i < j \leq r \). By construction, \(d_i^k \geq 0 \) and \(d_{ij}^k > 0 \). It follows from the definition of \(v^k \) and Property 5.1 that
\[
\alpha \|x^k - v^k\|
\]
\[
\leq \|F(x^k) - F(u^k) + \sum_{i=1}^r d_i^k (x^k_i - u^k_i)c_i^k + \sum_{1 \leq i < j \leq r} d_{ij}^k (x^k_{ij} - v^k_{ij})\| \geq \alpha \|x^k - u^k\|.
\]
As $k \to +\infty$, the right hand side tends to $+\infty$ while $\{(F(u^k), F(v^k))\}$ remains bounded. Thus, by taking a subsequence if necessary, we conclude that there is some index i with $x_i^k \to +\infty$ and $(F(x^k) - F(u^k))_i \to +\infty$. For this i, we then have $z_i^k \to +\infty$, whence $y_i^k \to 0$. Moreover, since $F(u^k)$ is bounded, $(F(x^k) - F(u^k))_i \to +\infty$ implies $f_i^k \to +\infty$. Thus $\lim(1 - \mu_k)(f_i^k - b_i^k) = +\infty$ since $|b_i^k| \leq \|b\|$ and $1 - \mu_k \geq \delta > 0$. Together with (5.1) and $\|H(z^k, \mu_k)\| \leq c$, we get the contradiction

$$c + \|b\| \geq \lim\inf_k(\|H(z^k, \mu_k)\| - b_i^k) \geq \lim\inf_k(h_i^k - b_i^k) = \lim\inf_k(1 - \mu_k)(f_i^k - b_i^k) = +\infty.$$

Now consider the case $c < \lambda_r(b)$. If $S_{c,0}$ is unbounded, then we can only deduce $\liminf_k(1 - \mu_k)(f_i^k - b_i^k) > 0$. Nonetheless, together with (5.1) and $\|H(z^k, \mu_k)\| \leq c < \lambda_r(b)$, we still get a contradiction:

$$0 > c - \lambda_r(b) \geq \lim\inf_k(\|H(z^k, \mu_k)\| - b_i^k) \geq \lim\inf_k(h_i^k - b_i^k) = \lim\inf_k(1 - \mu_k)(f_i^k - b_i^k) \geq 0,$$

where the second inequality follows from $b \geq_k \lambda_r(b)$ and Corollary 2.13.

Corollary 5.5. Suppose that F satisfies Property 5.1, then the solution set S is bounded.

The following proposition proves the nonsingularity of the Jacobian $J_z H(z, \mu)$ under the assumption that F satisfies Property 5.1.

Proposition 5.6. Suppose F satisfies Property 5.1, and $H(z, \mu)$ is as defined in (5.1). Then the Jacobian $J_z H(z, \mu)$ is nonsingular for any $(z, \mu) \in \mathcal{Z} \times (0, 1]$. Moreover, for each compact subset $C \subset \mathcal{Z}$, there exists $\sigma > 0$ such that for all $(z, \mu) \in C \times (0, 1/3]$ it holds that

$$\|J_z H(z, \mu)w\| \geq \sigma \|w\|,$$

for any $w \in \mathcal{Z}$.

Proof. Fix any $z \in \mathcal{Z}$ and let $z = \sum_{i=1}^{r} \lambda_i c_i$ be a spectral decomposition of z. We shall show that $J_z H(z, \mu)w = 0$ has only the trivial solution. Let $w \in \mathcal{Z}$ be a solution; i.e., w satisfies

$$(1 - \mu) F(p_2(z, \mu)) \left[\sum_{i=1}^{r} d_i w_i c_i + \sum_{1 \leq i < j \leq r} d_{ij} w_{ij} \right] + \sum_{i=1}^{r} \left(1 - d_i\right) w_i c_i + \sum_{1 \leq i < j \leq r} \left(1 - d_{ij}\right) w_{ij} = 0 \quad (5.2)$$

where $w = \sum_{i=1}^{r} w_i c_i + \sum_{1 \leq i < j \leq r} w_{ij}$ is a Peirce decomposition, $d_i = p'(\lambda_i, \mu)$ and

$$d_{ij} = \begin{cases} p(\lambda_i, \mu) - p(\lambda_j, \mu) & \text{if } \lambda_i \neq \lambda_j, \\ p'(\lambda_i, \mu) & \text{if } \lambda_i = \lambda_j. \end{cases}$$

Note that $d_i \in (0, 1)$ and $d_{ij} \in (0, 1)$; see Propositions 3.1 and 3.4. If $\mu = 1$, then (5.2) implies $w = 0$.

For the remainder of this proof, we assume $\mu \in (0, 1)$. Let $y = \sum_{i=1}^{r} d_i w_i c_i + \sum_{1 \leq i < j \leq r} d_{ij} w_{ij}$. Then, in the Peirce decomposition $y = \sum_{i=1}^{r} y_i c_i + \sum_{1 \leq i < j \leq r} y_{ij}$.
we have \(y_i = d_i w_i \) and \(y_{ij} = d_{ij} w_{ij} \). Rewriting (5.2) in terms of \(y \) gives

\[
(1 - \mu) JF(p_3(z, \mu)) y + \sum_{i=1}^{r} \left(\frac{1}{d_i} - 1 \right) y_i c_i + \sum_{1 \leq i < j \leq r} \left(\frac{1}{a_{ij}} - 1 \right) y_{ij} = 0. \tag{5.3}
\]

Note that \(\frac{1}{d_i} - 1 > 0 \) and \(\frac{1}{a_{ij}} - 1 > 0 \).

Since \(F \) satisfies Property 5.1, we have

\[
\left\| F(p_3(z, \mu) + ty) - F(p_3(z, \mu)) \right\| + \sum_{i=1}^{r} \frac{1}{1 - \mu} \left(\frac{1}{d_i} - 1 \right) y_i c_i + \sum_{1 \leq i < j \leq r} \frac{1}{1 - \mu} \left(\frac{1}{a_{ij}} - 1 \right) y_{ij}
\geq \alpha \|y\|
\]

which, in the limit as \(t \to 0 \), becomes

\[
\left\| JF(p_3(z, \mu)) y + \sum_{i=1}^{r} \frac{1}{1 - \mu} \left(\frac{1}{d_i} - 1 \right) y_i c_i + \sum_{1 \leq i < j \leq r} \frac{1}{1 - \mu} \left(\frac{1}{a_{ij}} - 1 \right) y_{ij} \right\| \geq \alpha \|y\|.
\]

From (5.3), we then have \(y = 0 \), and hence \(w = 0 \).

For the second part of the proposition, we note the transformation \(p_3 \) is continuous on the compact set \(C \times [0, \frac{1}{2}] \) and \(F \) is continuously differentiable. Hence the set \(p_3([0, \frac{1}{2}] \times C) \) is compact, and the Jacobian \(JF \) is uniformly bounded, say by \(M \), on this compact set; i.e., \(\|JF(p_3(z, \mu))\| \leq M \) for all \((z, \mu) \in C \times [0, \frac{1}{2}]\).

Fix any \((z, \mu) \in C \times (0, \frac{1}{2}]\). Let \(w \in \mathcal{J} \) be arbitrary. Adapting the above notations, we deduce that

\[
\|J_z H(z, \mu) w\| = \left\| (1 - \mu) JF(p_3(z, \mu)) y + \sum_{i=1}^{r} \left(\frac{1}{d_i} - 1 \right) y_i c_i + \sum_{1 \leq i < j \leq r} \left(\frac{1}{a_{ij}} - 1 \right) y_{ij} \right\|
\geq \alpha (1 - \mu) \|y\| \geq \frac{\alpha}{2} \|y\|.
\]

If \(\|y\| \geq \frac{1}{2 + M} \|w\| \), then it follows from the above inequality that

\[
\|J_z H(z, \mu) w\| \geq \frac{\alpha}{2(2 + M)} \|w\|.
\]

Suppose \(\|y\| < \frac{1}{2 + M} \|w\| \). From (5.2), we have that

\[
J_z H(z, \mu) w = (1 - \mu) JF(p_3(z, \mu)) y + w - y,
\]

which implies that

\[
\|J_z H(z, \mu) w\| = \|(1 - \mu) JF(p_3(z, \mu)) y + w - y\|
\geq \|w\| - \|y\| - \frac{1}{2} \|JF(p_3(z, \mu)) y\| \geq \frac{1}{2} \|w\|.
\]

The statement follows by taking \(\sigma = \min\{\frac{1}{2}, \frac{\alpha}{2(2 + M)}\} \).

Now, we are ready to establish the uniqueness of the trajectory.

Proposition 5.7. Let \(H(z, \mu) \) be as defined in (5.1) with \(b > \kappa > 0 \). If \(F \) satisfies Property 5.1, then the following statements are true.
(a) For each \(\mu \in (0, 1] \), the SNME (3.2) has a unique solution \(z(\mu) \); hence, the trajectory can be rewritten as \(T = \{ z(\mu), \mu \in (0, 1] \} \), which is smooth and monotone with respect to \(\mu \).

(b) The trajectory \(T \) is bounded; hence, the trajectory \(T \) has at least one accumulation point \((z_\ast, \mu_\ast) \) with \(\mu_\ast = 0 \).

(c) Every accumulation point \((z_\ast, 0) \) of \(T \) gives a solution \(z_\ast \) to the NME (1.1).

Proof. (a). Under the hypotheses of the proposition, \(S \) is bounded by Corollary 5.5.

Let \(U \) denote the set of \(\mu \in (0, 1] \) for which \(H(z, \mu) = 0 \) has a unique solution for each \(\mu \) \in \([\mu, 1] \). The set \(U \) is nonempty as it contains 1. Thus the infimum \(\bar{\mu} \) of \(U \) exists. If \(\bar{\mu} = 0 \), the desired result follows. Consider the case \(\bar{\mu} > 0 \). Pick a sequence \(\{\mu_k\} \subset U \) such that \(\mu_k \downarrow \bar{\mu} \) as \(k \to \infty \). Corresponding to each \(\mu_k \), let \(z_k \) denote the unique solution to \(H(z_k, \mu_k) = 0 \). Since \(S \) is bounded, the sequence \(\{z_k\} \) has a limit point \(\bar{z} \). It follows from the continuity of \(H \) that \((\bar{z}, \bar{\mu}) \in S \). As we assumed that \(\bar{\mu} > 0 \), the Jacobian \(J_z H(z, \bar{\mu}) \) is nonsingular for all \(z \in \mathcal{S} \). Thus we may apply the Implicit Function Theorem to the equation \(H(z, \bar{\mu}) = 0 \) at \((\bar{z}, \bar{\mu}) \). This gives a \(\delta \in (0, \bar{\mu}) \) and a continuous function \(\mu \mapsto \bar{z}(\mu) \) with \(\bar{z}(\bar{\mu}) = \bar{z} \) such that \(H(\bar{z}(\mu), \mu) = 0 \) for all \(\mu \in (\bar{\mu} - \delta, \bar{\mu} + \delta) \). Moreover, there is an \(\epsilon > 0 \) such that for each \(\mu \in (\bar{\mu} - \delta, \bar{\mu} + \delta) \), \(z(\mu) \) is the only solution of \(H(z, \mu) = 0 \) satisfying \(\|z - \bar{z}\| < \epsilon \).

For each \(k, \bar{\mu} - \frac{1}{k} \delta \notin U \). By definition of \(U \), there exists \(\nu_k \in (\bar{\mu} - \frac{1}{k} \delta, \bar{\mu}) \) such that \(H(z, \nu_k) = 0 \) does not have a unique solution. Since \(\nu_k \in (\bar{\mu} - \delta, \bar{\mu} + \delta) \), the equation \(H(z, \nu_k) = 0 \) has a solution \(z(\nu_k) \), whence there is another solution, say, \(\tilde{z} \). Since \(z(\nu_k) \) is the only solution to \(H(z, \nu_k) = 0 \) satisfying \(\|z - \bar{z}\| < \epsilon \), we must have \(\|\tilde{z} - \bar{z}\| \geq \epsilon \). As \(S \) is bounded, so is the sequence \(\{\tilde{z}^k\} \). Hence it has a limit point, say \(\tilde{z}^\infty \), different from \(\bar{z} \). By continuity of \(H \), \(\tilde{z}^\infty \) solves \(H(z, \bar{\mu}) = 0 \). Now apply the Implicit Function Theorem to \(H(z, \mu) = 0 \) at \((\tilde{z}^\infty, \bar{\mu}) \). This gives a \(\delta \in (0, \delta) \) and a continuous function \(\mu \mapsto \tilde{z}(\mu) \) with \(\tilde{z}(\bar{\mu}) = \tilde{z}^\infty \) such that \(H(\tilde{z}(\mu), \mu) = 0 \) for all \(\mu \in (\bar{\mu} - \delta, \bar{\mu} + \delta) \). Since \(H(z, \mu_k) = 0 \) has a unique solution for every \(k \) and \(\mu_k \downarrow \bar{\mu} \), it follows that \(\tilde{z}(\mu_k) = \tilde{z}(\nu_k) \) for all \(k \) sufficiently large (so that \(\mu_k \in (\bar{\mu} - \delta, \bar{\mu} + \delta) \)). Thus by continuity we arrive at the contradiction

\[
\tilde{z} = \lim_{k \to \infty} \tilde{z}(\mu_k) = \lim_{k \to \infty} \tilde{z}(\nu_k) = \tilde{z}^\infty.
\]

The smoothness of \(T \) follows from the Implicit Function Theorem.

(b). This follows from (a) and Corollary 5.5.

(c). Let \(z_\ast \) be any limit point of \(z(\mu) \) as \(\mu \downarrow 0 \). By continuity of \(H \), it follows that \(H(z_\ast, 0) = 0 \), i.e., \(F(\text{Proj}_K(z_\ast)) = \text{Proj}_K(-z_\ast) = 0 \). This shows that \(z_\ast \) is a solution of the NME (1.1).

6. Continuation Method. In this section, we describe the continuation method for solving the SNME (3.2).

Define the merit function \(\theta : (z, \mu) \in \mathcal{J} \times \mathbb{R}_+ \to \|H(z, \mu)\|^2 \).

ALGORITHM 6.1.

(Step 0. Given \(z_0 \in \mathcal{J} \). Choose \(\mu_0 \in (0, 1] \), \(\beta, \delta \in (0, 1) \), nonnegative integer \(M \) and \(b = \mu_3(-z_0, 1) > K > 0 \). Set \(k = 0 \).

(Step 1. Solve for \(v_k \) in

\[
H(z_k, \mu_k) + J_z H(z_k, \mu_k)v_k = 0.
\]
Step 2. Let i be the smallest nonnegative integer such that
\[
\theta(z^k + \beta_i v^k, \mu_k) \leq W + \delta \beta_i J_z \theta(z^k, \mu_k)v^k.
\] (6.1)
where W is any value satisfying
\[
\theta(z^k, \mu_k) \leq W \leq \max_{j=0,1,\ldots,m_k} \theta(z^{k-j}, \mu_{k-j}),
\] (6.2)
and m_k is a nonnegative integer no more than $\min\{m_k-1, 1, M\}$. Set $\alpha_k = \beta^k$.

Step 3. Set
\[
z^{k+1} = z^k + \alpha_k v^k, \quad \mu_{k+1} = \delta \mu_k, \quad k \leftarrow k + 1.
\]

Go to Step 1.

Remark 6.2. Since μ_k is always zero, the algorithm performs monotone line search. Otherwise, a nonmonotone line search is used instead. For more description of nonmonotone line search, we refer the reader to [14, 23].

Next, we establish the global convergence of Algorithm 6.1.

Proposition 6.4. Suppose that F satisfies Property 5.1, and \(\{z^k, \mu_k\}\) is a sequence generated by Algorithm 6.1. If the sequence \(\{\theta(z^k, \mu_k)\}\) is bounded, then \(\{z^k\}\) has a limit point and every limit point of \(\{z^k\}\) solves the NME (1.1).

Proof. In view of Proposition 5.6, the sequence \(\{(z^k, \mu_k)\}\) is well-defined. Assume that the sequence \(\{\theta(z^k, \mu_k)\}\) is bounded from above. Together with $\mu_k \downarrow 0$, we conclude from Proposition 5.4 that the sequence \(\{z^k\}\) is bounded. Thus it has a limit point.

From Proposition 3.4, we know that the functions $\mu \in \mathbb{R}_{++} \rightarrow p_3(z, \mu)$ and $\mu \in \mathbb{R}_{++} \rightarrow p_3(-z, \mu)$ are Lipschitz continuous with Lipschitz constants bounded from above by, say, κ_μ. Therefore the set $\bigcup \{p_3(z, \mu) : \mu \in (0, 1]\}$ is bounded, and hence is contained in some compact $C \subseteq \mathbb{R}$. The function F is continuously differentiable, whence is Lipschitz continuous on C with Lipschitz constant, say, κ_F. Subsequently for any $\mu_1, \mu_2 \in (0, 1]$,
\[
\|H(z^k, \mu_1) - H(z^k, \mu_2)\| &= \|p_3(z^k, \mu_1) - p_3(z^k, \mu_2)\| \\
&= |(1 - \mu_1)F(p_3(z^k, \mu_1)) - F(p_3(z^k, \mu_2))| \\
&\leq |(1 - \mu_1)||F(p_3(z^k, \mu_1)) - F(p_3(z^k, \mu_2))| \\
&\leq |(1 - \mu_1)||F(p_3(z^k, \mu_1)) - F(p_3(z^k, \mu_2))| + |(1 - \mu_1)||F(p_3(z^k, \mu_1)) - F(p_3(z^k, \mu_2))|
\]
shows that \(\mu \in (0, 1] \mapsto H(z, \mu) \) is Lipschitz continuous with Lipschitz constant no more than \((2\kappa_F + 1)\kappa_p + \|F(\text{Proj}_K(z^k)) + b\|\). The function \(F \) is continuous, whence the sequence \(\{(2\kappa_F + 1)\kappa_p + \|F(\text{Proj}_K(z^k)) + b\|\} \) is bounded from above, say by \(\kappa \). Thus

\[
\theta(z^{k+1}, \mu_{k+1}) = \left(\|H(z^{k+1}, \mu_k)\| + \|H(z^{k+1}, \mu_{k+1})\| - \|H(z^{k+1}, \mu_k)\| \right)^2 \leq \left(\|H(z^{k+1}, \mu_k)\| + \gamma_k \right)^2,
\]

where \(\gamma_k := \kappa|\mu_k - \mu_{k+1}| = \kappa(1 - \delta)^k\delta \mu_0 \). Let \(l(k) \in \{k - m_k, \ldots, k\} \) be an integer such that

\[
\theta(z^{k(l)}, \mu_{k(l)}) = \max_{j=0,1,\ldots,m_k} \theta(z^{k-j}, \mu_{k-j}).
\]

For convenience of notation, we shall denote \(\theta(z^k, \mu_k) \) by \(\theta_k \). In these notations, the inequalities (6.1) and (6.2) imply that

\[
\|H(z^k, \mu_{k-1})\| \leq \sqrt{\theta_{l(k-1)} + \delta \alpha_{k-1} J_z \theta(z^{k-1}, \mu_{k-1}) v^{k-1}},
\]

and hence, it further follows from (6.3) that

\[
\sqrt{\theta_k} \leq \sqrt{\theta_{l(k-1)} + \delta \alpha_{k-1} J_z \theta(z^{k-1}, \mu_{k-1}) v^{k-1} + \gamma_{k-1}}.
\]

Thus \(\sqrt{\theta_k} \leq \sqrt{\theta_{l(k-1)} + \gamma_{k-1}} \) since \(\alpha_k > 0 \) and \(J_z \theta(z^k, \mu_k) v^k \leq 0 \) for all \(k \) (see Remark 6.2). Subsequently, using \(m_k \leq m_{k-1} + 1 \), we deduce

\[
\sqrt{\theta_{l(k)}} = \sqrt{\max_{j=0,1,\ldots,m_k} \theta_{k-j}} \leq \sqrt{\max_{j=0,1,\ldots,m_{k-1}+1} \theta_{k-1-(j-1)}} \leq \sqrt{\max \{\theta_{l(k-1)}, \theta_k\}} \leq \sqrt{\theta_{l(k-1)} + \gamma_{k-1}}.
\]

Being a bounded sequence, \(\{\theta_{l(k)}\} \) has a convergent subsequence \(\{\theta_{l(k_i)}\} \). By induction on \(i \), it follows from the above inequality that

\[
\sqrt{\theta_{l(k_i+1)}} \leq \sqrt{\theta_{l(k_i+1-j)}} + \sum_{k=k_i+1-j}^{k_i+1-1} \gamma_k \leq \sqrt{\theta_{l(k_i)}} + \sum_{k=k_i}^{k_i+1-1} \gamma_k
\]

for any \(j \in \{1, \ldots, k_i+1 - k_i\} \). Together with the fact that both the subsequence \(\{\theta_{l(k_i)}\} \) and the series \(\sum_{k=1}^{\infty} \gamma_k \) are convergent, we then conclude that the sequence \(\{\theta_{l(k)}\} \) is convergent. Taking \(k = l(k') \) followed by the limit \(k' \to \infty \) in (6.4), we have

\[
\lim_{k \to \infty} \alpha_{l(k)-1} J_z \theta(z^{l(k)-1}, \mu_{l(k)-1}) v^{l(k)-1} = 0.
\]

Since \(\mu_k \to 0 \), we have \(\mu_k \in (0, \frac{1}{2}] \) whenever \(k \) is sufficiently large. By the second part of Proposition 5.6, where the set \(C \) is taken to be any compact set containing the bounded sequence \(\{z^k\} \), there exists \(\sigma > 0 \) such that for \(k \) sufficiently large it holds that

\[
\|J_z H(z^{l(k)-1}, \mu_{l(k)-1}) v^{l(k)-1}\| \geq \sigma \|v^{l(k)-1}\|,
\]
which implies
\[\alpha_{l(k)-1}J_{\gamma}(z^{(k)-1}, \mu_{l(k)-1})v^{(k)-1} = -\alpha_{l(k)-1}\|H(z^{(k)-1}, \mu_{l(k)-1})\|^2\]
\[= -\alpha_{l(k)-1}\|J_{\gamma}H(z^{(k)-1}, \mu_{l(k)-1})v^{(k)-1}\|^2\]
\[\leq -\alpha_{l(k)-1}\sigma^2\|v^{(k)-1}\|^2\]
\[\leq -\alpha_{l(k)-1}\sigma^2\|v^{(k)-1}\|^2,\]
where the last inequality follows from \(\alpha_k \leq 1\) for all \(k\). Consequently, we obtain from (6.5) that
\[\lim_{k \to \infty} \alpha_{l(k)-1}\|v^{(k)-1}\| = 0.\] (6.6)

Next, adapting the arguments employed for the proof of the theorem in [23, pp 709–711], we prove that
\[\lim_{k \to \infty} \alpha_k J_{\gamma}(z^k, \mu_k)v^k = -\lim_{k \to \infty} \alpha_k \|H(z^k, \mu_k)\|^2 = 0.\] (6.7)
Let \(l(k) = l(k + M + 2)\), so that \(l(k) \geq (k + M + 2) - M = k + 2\). We first show, by induction, that for any integer \(j \geq 1\)
\[\lim_{k \to \infty} \alpha_{l(k)-j}\|v^{l(k)-j}\| = 0\] (6.8)
and
\[\lim_{k \to \infty} \theta_{l(k)-j} = \lim_{k \to \infty} \theta_{l(k)}.\] (6.9)
If \(j = 1\), since \(\{l(k)\} \subset \{l(k)\}\), (6.8) follows from (6.6). This in turn implies
\[\|(z^{l(k)}, \mu_{l(k)}) - (z^{l(k)-1}, \mu_{l(k)-1})\| := \sqrt{\|\mu_{l(k)} - \mu_{l(k)-1}\|^2 + \|z^{l(k)} - z^{l(k)-1}\|^2} \to 0,\]
so that (6.9) holds for \(j = 1\) by the uniform continuity of \(\theta\) on the compact set \(C \times [0, 1]\).
Assume now that (6.8) and (6.9) hold for some given \(j\). By (6.4) one can write
\[\sqrt{\theta_{l(k)-j}} \leq \sqrt{\theta_{l(k)-j-1}} + \delta \alpha_{l(k)-j-1}J_{\gamma}(z^{l(k)-j-1}, \mu_{l(k)-j-1})v^{l(k)-j-1} + \gamma_{l(k)-j-1}.\]
Taking limit for \(k \to \infty\), we obtain from (6.9) that
\[\lim_{k \to \infty} \alpha_{l(k)-(j+1)}J_{\gamma}(z^{l(k)-(j+1)}, \mu_{l(k)-(j+1)})v^{l(k)-(j+1)} = 0.\]
Using the same argument for deriving (6.6) from (6.5), we get
\[\lim_{k \to \infty} \alpha_{l(k)-(j+1)}\|v^{l(k)-(j+1)}\| = 0.\]
Moreover, this implies \(\|(z^{l(k)-j}, \mu_{l(k)-j}) - (z^{l(k)-(j+1)}, \mu_{l(k)-(j+1)})\| \to 0\), so that by (6.9) and the uniform continuity of \(\theta\) on \(C \times [0, 1]\):
\[\lim_{k \to \infty} \theta_{l(k)-(j+1)} = \lim_{k \to \infty} \theta_{l(k)-j} = \lim_{k \to \infty} \theta_{l(k)}.\]
Therefore, (6.8) and (6.9) hold for any \(j \geq 1\).
For any k, we have
\[z^{l(k)} - z^{k+1} = \sum_{j=1}^{l(k)-k-1} \alpha_{l(k)-j} v^{l(k)-j}, \]
and $l(k) - k - 1 = l(k + M + 2) - k - 1 \leq M + 1$, so it follows from (6.8) that
\[\lim_{k \to \infty} \| (z^{k+1}, \mu_{k+1}) - (z^{l(k)}, \mu_{l(k)}) \| = 0. \]
Since $\{\theta_{l(k)}\}$ is convergent, then the uniform continuity of θ on $C \times [0, 1]$ yields
\[\lim_{k \to \infty} \theta_k = \lim_{k \to \infty} \theta_{l(k)} = \lim_{k \to \infty} \theta_{l(k)}. \]
Taking limit as $k \to \infty$ in (6.4), we obtain (6.7) as desired.

Now, suppose that z^* is a limit point of $\{z^k\}$, say it is the limit of the subsequence $\{z^{k}: k \in K\}$. By taking a subsequence if necessary, we may assume, without any loss of generality, that the subsequence $\{\alpha_k: k \in K\}$ converges. If $\lim_{k \to \infty, k \in K} \alpha_k > 0$, it follows from (6.7) that $H(z^*, 0) = 0$. In the other case where $\lim_{k \to \infty, k \in K} \alpha_k = 0$, we have that, from the definition of α_k, for each $k \in K$,
\[\theta(z^k + \alpha_k \beta^{-1} v^k, \mu_k) > \theta(z^k, \mu_k) + \delta \alpha_k \beta^{-1} J_z \theta(z^k, \mu_k) v^k, \]
implies that
\[(\delta - 1) \alpha_k \beta^{-1} \| H(z^k, \mu_k) \|^2 + o(\alpha_k \beta^{-1} \|v^k\|) > 0. \]
(6.10)
Notice that
\[\| H(z^k, \mu_k) \| = \| J_z H(z^k, \mu_k) v^k \| \geq \sigma \| v^k \|, \]
and $\| H(z^k, \mu_k) \|$ is bounded, thus $\{v^k\}$ is also bounded. Dividing both sides of (6.10) by $\alpha_k \beta^{-1}$ and taking limits as $k \to \infty, k \in K$, we obtain
\[(\delta - 1) \| H(z^*, 0) \|^2 \geq 0. \]
Since $\delta - 1 < 0$ and $\| H(z^k, \mu_k) \|^2 \geq 0$, it must happen that $H(z^*, 0) = 0$, and this completes the proof.

7. Conclusion. Based on a different characterization of P-matrices, we proposed a new P-type property for functions defined over Euclidean Jordan algebras, and established global and linear convergence of a continuation method for solving nonlinear complementarity problems over symmetric cones. Our P-type property represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically. It might be interesting to investigate if our P-type property can be used in other numerical methods such as smoothing Newton methods, non-interior continuation methods and merit function methods.

Acknowledgments. We thank the anonymous referees for pointing out several typos in the original paper, and their comments and suggestions that improved the presentation of this paper.

REFERENCES
CONTINUATION METHOD FOR COMPLEMENTARITY PROBLEMS

