<table>
<thead>
<tr>
<th>Title</th>
<th>Strain-driven phase transitions and associated dielectric/piezoelectric anomalies in BiFeO₃ thin films</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Huang, Chuanwei; Chu, Y. H.; Chen, Zuhang; Wang, Junling; Sritharan, Thirumany; He, Q.; Ramesh, R.; Chen, Lang</td>
</tr>
<tr>
<td>Date</td>
<td>2010</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6845</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2010 American Institute of Physics. This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of American Institute of Physics. The paper can be found at the following DOI: http://dx.doi.org/10.1063/1.3499658. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Strain-driven phase transitions and associated dielectric/piezoelectric anomalies in BiFeO\textsubscript{3} thin films

C. W. Huang1,3(a), Y. H. Chu2, Z. H. Chen1, Junling Wang1, T. Sritharan1, Q. He3, R. Ramesh3, and Lang Chen1,b

1School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
2Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30013, Taiwan
3Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA

(Received 20 May 2010; accepted 19 September 2010; published online 11 October 2010)

Strain-driven phase transitions and related intrinsic polarization, dielectric, and piezoelectric properties for single-domain films were studied for BiFeO\textsubscript{3} using phenomenological Landau–Devonshire theory. A stable and mixed structure between tetragonal and rhombohedral-like (monoclinic) phases is predicted at a compressive misfit strain of $u_m = -0.0382$ without an energy barrier. For a tensile misfit strain of $u_m = 0.0272$, another phase transition between the monoclinic and orthorhombic phases was predicted with sharply high dielectric and piezoelectric responses.

Normal functional materials could become excellent electromechanical systems by the formation of morphotropic phase boundary (MPB) as in the examples of Pb(Zr\textsubscript{1-x}Ti\textsubscript{x})O\textsubscript{3}, (1-x)Pb(Mg\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3}-xPbTiO\textsubscript{3} and (1-x)Pb(Zn\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3}-xPbTiO\textsubscript{3},1–3 since they have piezoelectric coefficients more than one order of magnitude larger than the commonly used piezoelectrics such as quartz. Piezoelectric and dielectric phenomena in ferroelectrics are well known to stem from both intrinsic and extrinsic sources. The intrinsic contribution corresponds to the lattice contribution from the ionic/electronic displacements while the extrinsic contribution arises from domain wall motion or the change in domain volume fraction due to the phase competition. It is reported that the intrinsic dielectric response in the MPB Pb(Zr\textsubscript{1-x}Ti\textsubscript{x})O\textsubscript{3} (PZT) thin film is the largest in comparison with those in rhombohedral (R), orthorhombic (O) or tetragonal (T) phases. However, the room temperature permittivity in PZT films is dominated largely by extrinsic domain wall motion contributing up to 75% of its total relative permittivity.4

A great deal of work has been reported on fundamental and technological aspects of the misfit strain dependent BiFeO\textsubscript{3} (BFO) structures and related properties.5–11 The lead-free BFO thin film deposited on LaAlO\textsubscript{3} (LAO) demonstrated a large piezoelectric response recently near the strain-driven, tetragonal to rhombohedral-like phase transition, besides the chemical composition driven phase transitions mentioned above.12 In contrast to the traditional Pb-based ferroelectrics, BFO thin film is an environmentally friendly material and is considered to be a promising candidate for realizing multiferroic properties for spintronic devices. Notwithstanding the dramatic progress in the development of strain dependent properties in BFO thin films,6–13 there are still many unanswered questions such as the stable domain structure and related ferroelectric, piezoelectric, and ferromagnetic properties in the different strain-driven polymorphic phases.

In the present letter, we report a study of the misfit strain on phase stability, spontaneous polarization, dielectric, and piezoelectric properties of BFO thin films. Two mixed structure between T and M, M and O phases are predicted based on thermodynamic theory. Moreover, the stable mixed structures between the T and M phases, driven by the large compressive misfit strain, were investigated theoretically and compared with experimental results.12 Finally, we propose the anomalous peaks in dielectric and piezoelectric responses near the M and O phase boundary.

In constructing the misfit strain-temperature phase diagram for BFO thin film, we assume that a single domain (001) BFO film epitaxially grows on the thick cubic substrate under short-circuit electrical boundary conditions. The thermodynamic potential of the pseudocubic BFO film is expressed as a function of polarization P_i ($i = 1, 3$) temperature T and misfit strain $u_m = (a_s - a_t)/a_s$, where a_s is the in-plane lattice parameter for the substrate and a_t is the equivalent cubic lattice constant of the free standing film. The expression of thermodynamic potential follows as:10

$$ F = a'_1(P_i + P_i^d) + a'_3P_3^d + a'_4P_4^d + a'_5P_5^d + a'_6P_6^d + \frac{u_m}{s_{11} + s_{22}} $$

with the following renormalized coefficients:

$\begin{align*}
 a'_1 &= a_1 - u_m\frac{Q_{11} + Q_{12}}{S_{11} + S_{12}}, \quad a'_3 = a_1 - u_m\frac{2Q_{12}}{S_{11} + S_{12}}, \\
 a'_4 &= a_1 + 1 - \frac{1}{2}\left\{\frac{(Q_{11}^2 + Q_{12}^2)S_{11} - 2Q_{11}Q_{12}S_{12}}{S_{11} + S_{12}}\right\}, \\
 a'_5 &= a_1 + \frac{Q_{12}^2}{S_{11} + S_{12}}, \quad a'_6 = a_1 + \frac{Q_{12}(Q_{11} + Q_{12})}{S_{11} + S_{12}}.
\end{align*}$

aElectronic mail: m080100@c.e.ntu.edu.sg.
bElectronic mail: langchen@ntu.edu.sg.
\[a_{12} = a_{12} - \frac{1}{2} S_{11} - S_{12} \left[(Q_{11}^2 + Q_{12}^2) S_{11} - 2 Q_{11} Q_{12} S_{12} \right] + \frac{Q_{44}^2}{2 S_{44}}, \]

where \(a_i \) is the dielectric stiffness, \(a_{ij} \) and \(a_{ijk} \) are the higher order stiffness coefficients at constant stress, \(Q_{ij} \) are the electrostrictive coefficients, and \(S_{ij} \) are the elastic compliances of the film. The parameters and coefficients used for calculation are collected from previous papers.\(^{10,12,13}\) Four misfit-strain-dependent, potentially stable phases at room temperature, were considered in our numerical calculation with different free energies \(F \) and spontaneous polarizations \(P \); they are as follows: cubic (\(F_C, P=0 \)), tetragonal (\(F_T, P_1=P_2=0, P_3=P_7 \neq 0 \)), monoclinic (\(F_M, P_1=P_2=P_M1 \neq 0, P_3=P_M3 \neq 0 \)), and orthorhombic (\(F_O, P_1=P_2=P_O \neq 0, P_3=0 \)), which correspond to paraelectric phase, \(c \) phase, \(r \) phase and \(aa \) phase in Ref. 14, respectively.

The misfit strain-temperature phase diagram and related properties of BFO thin films have been reported previously but the aim of this paper is different.\(^9,13\) Similar strain-dependent results have been obtained by first principles method but only the effect of negative misfit strain arising from a compressive substrate, on the polarization and stable phase structure was considered. Moreover, an energy gap still exists between the \(T \) and \(R \)-like phases near the strain-driven coexistence range which is not consistent with the reported experimental observation of coexistence of \(T \) and \(R \)-like phases in the BFO/LAO system.\(^9\) Due to the small range of absolute misfit strain considered in the previous calculations,\(^13\) the mixed \(T \) and \(O \) phases found to be stable at high absolute strains and reported in this study were not revealed. From the Landau phenomenological theory, we can obtain the stable phase by minimizing the total energies among the different phases. Figure 1 shows the calculated total free energies and spontaneous polarizations for different phases as a function of misfit strain at room temperature. Two mixed phase structures near the \(T/M \) and \(M/O \) boundaries can be deduced from Fig. 1 due to the very close free energy for the different misfit strains of about \(\Delta u_m=-0.038 \) and \(\Delta u_m=0.0272 \). With reduction in misfit strain in Fig. 1(b), the stable phase changes from \(O \) to \(M \) and finally to \(T \) phase with increase in spontaneous polarization, and switch in its direction from in-plane to out-of-plane. At the compressive misfit strain of \(\Delta u_m=-0.038 \) in Fig. 1(a), a mixed \(T \) and \(M \) phase structure could be predicted as the free energies for the \(T \) and \(M \) phases overlap implying that they can coexist at this misfit strain. The characteristic intrinsic dielectric constants \(\varepsilon_{33} \) and piezoelectric coefficients \(d_{33} \) under compressive strain are shown in Fig. 2 based on the single domain model. The calculated intrinsic \(d_{33} \) increases from 25 pm/V to 40 pm/V with increase in compressive misfit strain. In contrast to the reported total piezoelectric response (\(d_{33}^p=120 \) pm/V),\(^15\) the intrinsic \(d_{33} \) in \(T \) and \(M \) mixed phase is much smaller and thus we infer that the extrinsic contribution is dominant for the mixed \(T \) and \(M \) phase structure. This implies that the change in phase fraction via phase boundary motion contributes more to the total piezoresponse in the mixed structure.\(^12\) Despite the experimental observation of the mixed \(T \)-like and \(M \) phase stripes in BFO/LAO system by high-resolution atomic force microscopy and transmission electron microscopy (TEM),\(^12\) detailed information on the equilibrium phase boundary structure is still not available. According to our thermodynamic calculation following the idea of a mixture of \(T \) and \(R \) phases in PZT’s MPB,\(^16\) the stable mixed \(T \) and \(M \) (\(R \)-like) phases structure in BFO is shown in Fig. 3. Note that \(m_0 \) is the normal to the interface between \(T \) and \(R \)-like phases in BFO thin film. In order to accommodate a stable mixed phase structure, both principal axes of \(T \) and \(R \)-like lattices rotate \(1.65^\circ \) from the corresponding free standing lattices. The angle \(\Phi \) corresponding to the direction of the phase interface is calculated to be \(52^\circ \). Here we only considered a mixed \(T/R \) structure with a fixed geometry for simplicity, and obtained quantitatively the stable configuration which agrees with the observed results...
\((\Phi=48.4^\circ \text{ and } \theta=3.23^\circ)\) shown by TEM images. Thus, it is reasonable to forecast the phase boundary interface as the (101) plane. The most recent experimental results however show that this mixed T and R-like phase structure can be more complicated than the current simple model, even though the current model can explain some key experimental findings. There could be many extra “phases” such as the parent phases, transitional phases, etc., in mixed phase structures when the film is subjected to large compressive misfit strains. These structures vary quasiperiodically with complex behavior of nanoscale twinlike structures. The experimental results of these will be reported in subsequent papers.

Additionally, it could be noted in Fig. 1 that there is another strain-induced phase transition subject to tensile strain where a stable coexisting region is evident between M and O phases to induce the anomalous behavior of nanoscale twinlike structures. The experimental results of these will be reported in subsequent papers.

In summary, we have studied the misfit strain-driven phase transitions of single domain BFO thin films. The spontaneous polarization, dielectric, and piezoelectric coefficients are calculated as a function of misfit strain at room temperature for T, M, and O phases. A stable geometric mixed structure between T and M (R-like) phases is investigated theoretically, and we suggest that the phase interface is along the (101) planes with certain distortions to accommodate large strains. Our theoretical results also indicate the possibility of another gigantic out-of-plane dielectric and piezoelectric responses between the M and O phases. This is even larger than the total dielectric and piezoelectric responses of the mixed T and M phases.

L.C. acknowledges the financial support from Nanyang Technological University under MOE Grants Nos. RG 21/07 and ARC 16/08. Y.H.C. acknowledges the support of the National Science Council, R.O.C., under Contract No. NSC-98-2119-M-009-016.