<table>
<thead>
<tr>
<th>Title</th>
<th>Solid-state structures and superstructures of two charged donor-acceptor rotaxanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhao, Yanli; Shveyd, Alexander K; Stoddart, J. Fraser</td>
</tr>
<tr>
<td>Date</td>
<td>2010</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/6962</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2010 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Tetrahedron Letters, Elsevier. It incorporates referee's comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1016/j.tetlet.2010.09.140.</td>
</tr>
</tbody>
</table>
Solid-state structures and superstructures of two charged donor-acceptor rotaxanes

Yan-Li Zhao, Alexander K. Shveyd, J. Fraser Stoddart*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA. Fax: 1 847 491 1009; Tel: 1 847 491 3793; E-mail: stoddart@northwestern.edu

Since the first report\(^1\) of the synthesis of cyclobis(paraquat-p-phenylene) (CBPQT\(^{4+}\)) in 1988, CBPQT\(^{4+}\) ring-containing catenanes and rotaxanes have attracted\(^2\) the attention of chemists, physicists, materials scientists and engineers, on account of the fact that these mechanically interlocked molecules can be harnessed in molecular muscle-activated cantilevers,\(^3\) macroscopic sol-gel and liquid-crystalline switches,\(^4\) molecular electronic devices,\(^5\) mechanized mesoporous silica nanoparticles,\(^6\) and metal-organic frameworks.\(^7\) In particular, bistable [2]rotaxanes have commonly consisted of \(\pi\)-electron-rich tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) units located in the rod portions of their dumbbell components encircled by single CBPQT\(^{4+}\) rings. The geometries and switching characteristics of these bistable [2]rotaxanes have been investigated\(^8\) in solution in order to obtain an understanding of the intramolecular interactions between the ring and dumbbell components. It is also instructive, however, to obtain solid-state structures of these [2]rotaxanes in order to understand their switching properties. A systematic search (Fig. 1) of the literature has revealed a total of 91 crystal structures of cyclophane-based donor-acceptor catenanes already reported\(^9\) by ourselves and others to date. By contrast, as a result of the difficulties encountered during attempts to crystallize cyclophane-based donor-acceptor [2]rotaxanes, there are only 15 of their solid-state structures reported in literature. Bistable [2]rotaxanes have been synthesized which incorporate DNP, TTF, and HQ (hydroquinone) units along with the CBPQT\(^{4+}\) ring and stoppers such as monoaza-18-crown-6,\(^10\) triisopropylsilane,\(^11\) \((1R,2S,5R)-\)menthyl groups,\(^12\) 2,6-diisopropylbenzene,\(^13\) 3,5-di(tert-butyl)benzene,\(^14\) adamantane,\(^15\) anthracene,\(^16\) and ferrocene.\(^16\) Herein, we report the preparation and characterization, by single crystal X-ray crystallography, of two donor-acceptor [2]rotaxanes 1R•4PF\(_6\) and 2R•4PF\(_6\) and one [2]pseudorotaxane [D⊂CBPQT]•4PF\(_6\).

The preparation of the [2]rotaxanes 1R•4PF\(_6\) and 2R•4PF\(_6\), and the [2]pseudorotaxane [D⊂CBPQT]•4PF\(_6\) is presented in the Supplementary Data (SD). The dumbbell compounds were prepared from the appropriate ditosylated DNP diethylene glycol derivatives\(^17\) and 4-[4-isopropylphenyl bis-(4-tert-butylphenyl)methyl]phenol,\(^18\) 2,6-diisopropylphenol, or thymol. The [2]rotaxanes 1R•4PF\(_6\) and 2R•4PF\(_6\), and the [2]pseudorotaxane [D⊂CBPQT]•4PF\(_6\) were obtained subsequently by a template-directed synthetic approach from their corresponding dumbbell...
compound, 1,1’-[1,4-phenylenebis(methylene)]bis-4,4’-bipyridinium bis(hexafluorophosphate), and 1,4-bis(bromomethyl benzene) in DMF under 10 kbar pressure at room temperature for 3 days. The two [2]rotaxanes and one [2]pseudorotaxane were isolated as analytically pure solids in yields ranging from 57% to 66%, after SiO$_2$ column chromatography with Me$_2$CO / NH$_4$PF$_6$ (100:1 v/w) as eluent. Although [D_cCBPQT]4PF$_6$ is a [2]pseudorotaxane, it is very stable during the processes involved in its preparation and characterization. The [2]rotaxanes 1R•4PF$_6$ and 2R•4PF$_6$ and the [2]pseudorotaxane [D_cCBPQT]4PF$_6$ were characterized by NMR spectroscopy, electrospray ionization mass spectrometry, and X-ray crystallography.

The UV-Vis spectra of the [2]rotaxanes and the [2]pseudorotaxane, recorded in MeCN, show charge transfer (CT) absorption bands in the 450–600 nm region, an observation which indicates that the CBPQT$^{4+}$ rings in 1R•4PF$_6$, 2R•4PF$_6$, and [D_cCBPQT]4PF$_6$ encircle the DNP units as shown above. In the 1H NMR spectra of 1R•4PF$_6$, 2R•4PF$_6$, and [D_cCBPQT]4PF$_6$ recorded in CD$_2$CN at 298 K, the resonances of the DNP units experience large upfield shifts, on account of the shielding effect of the encircling CBPQT$^{4+}$ ring, to ca. 2.3 (H$_{4a}$), 5.9 (H$_{1c}$), and 6.2 (H$_{2c}$) ppm as compared with those for the same protons in the corresponding dumbbell compounds where the resonances appear in the region δ = 7–8 ppm.

Slow vapor diffusion of Pr$_2$O into MeCN solutions of 1R•4PF$_6$, 2R•4PF$_6$, and [D_cCBPQT]4PF$_6$ for 2–4 days afforded single crystals suitable for X-ray crystallographic analysis. The crystals had a cuboidal shape and were relatively large, attaining up to several millimeters in length (Fig. 2).

The crystal structure of the [2]rotaxane 1R•4PF$_6$ is monoclinic and belongs to the space group $P2_1/c$. It reveals that the dumbbell component is threaded centrosymmetrically through the middle of the CBPQT$^{4+}$ ring, the DNP unit on the dumbbell component being located inside the CBPQT$^{4+}$ ring with interplanar separations of ca. 3.5 Å between the average mean planes of the π-donor and π-acceptors. The DNP unit on the dumbbell component has an *anti* geometry associated with the conformation of the diethyleneglycol chains. In addition to the [1π-1π] stacking interactions between the electron-rich DNP unit and the electron-deficient bipyridinium units on the CBPQT$^{4+}$ ring, there are (1) T-type edge-to-face interactions between the H$_{4a}$ protons of the DNP unit on the dumbbell component and the p-xylyl residues of the CBPQT$^{4+}$ ring and (2) [C–H–O] hydrogen bonds between the oxygen atoms of the diethyleneglycol chains on the dumbbell component and (i) the bipyridinium H$_{1c}$, (ii) the p-xylyl H$_{6}$ and (iii) the methyl H$_{5}$ protons of the CBPQT$^{4+}$ ring. The PF$_6^-$ counterions do not participate in hydrogen bond interactions with either the dumbbell component or the CBPQT$^{4+}$ ring directly.

In the case of the [2]rotaxane 2R•4PF$_6$, which carries smaller stoppers on its dumbbell component, its crystal structure (Fig. 3 and Fig. S2 in the SD) changes to being triclinic and belongs to the space group $P1$. The crystal structure reveals an elegant structural arrangement wherein the 2,6-diisopropylphenyl-terminated dumbbell component is threaded centrosymmetrically through the middle of the CBPQT$^{4+}$ ring, the axis of the DNP unit being inclined by approximate 45° to the plane of the CBPQT$^{4+}$ ring. The DNP unit on the dumbbell component has an *anti* geometry associated with the conformation of the diethyleneglycol chains. The DNP unit is located inside the CBPQT$^{4+}$ ring with interplanar separations of ca. 3.5 Å between the π-donor and π-acceptors. In addition to the [1π-1π] stacking interaction between the electron-rich DNP unit and the electron-deficient bipyridinium units on the CBPQT$^{4+}$ ring, there are once again (1) T-type edge-to-face interactions between the H$_{4a}$

Figure 2. Photographs (a and b) of the single crystals grown by vapor diffusion of Pr$_2$O into a solution of 2R•4PF$_6$ in MeCN at room temperature.

Figure 3. Ball-and-stick representations of the crystal structures of the [2]rotaxanes 1R$^{4+}$ and 2R$^{4+}$. Hydrogen atoms, solvent molecules, and counterions are omitted for the sake of clarity. The DNP unit is colored red, the CBPQT$^{4+}$ ring blue, and the remainder gray.
protons of the DNP unit on the dumbbell component and the p-xylxy residues of the CBPQT$^\text{4+}$ ring. (2) $[\text{C}^\cdots\text{H}^\cdots\text{O}]$ interactions between the oxygen atoms of the diethyleneglycol chains on the dumbbell component and (i) the bipyridinium D_{pp} and (ii) the methylene H_{p} protons of the CBPQT$^\text{4+}$ ring. (3) $[\text{C}^\cdots\text{H}^\cdots\text{N}]$ hydrogen bonds between the nitrogen atoms of the solvent (MeCN) and the bipyridinium H_{p} protons on the CBPQT$^\text{4+}$ ring, and (4) $[\text{C}^\cdots\text{H}^\cdots\text{F}]$ hydrogen bonds between the fluorine atoms of three PF_{e} counterions and (i) the bipyridinium H_{pp}, (ii) the p-xylxy H_{α}, (iii) the methylene H_{δ} and (iv) the diethyleneglycol protons.

In the packing of $1\text{R}^\text{2}+\text{PF}_{\text{e}}$ and $2\text{R}^\text{2}+\text{PF}_{\text{e}}$, the 2[rotaxanes are connected by intermolecular $[\pi\cdots\pi]$ stacking interactions aided and abetted by a hydrogen bonding network associated with intervening PF_{e} counterions and solvent molecules. The 2[rotaxane $1\text{R}^\text{2}+\text{PF}_{\text{e}}$ assumes a cluster-like packing mode (Fig. 4a), while $2\text{R}^\text{2}+\text{PF}_{\text{e}}$ adopts a sheet-like packing mode (Fig. 4b).

In analogy with the 2[rotaxane $2\text{R}^\text{2}+\text{PF}_{\text{e}}$, the 2[pseudorotaxane adopts a sheet-like packing mode.

![Figure 4. Packing superstructures of the 2[rotaxanes $1\text{R}^\text{2}+\text{PF}_{\text{e}}$ (a) and $2\text{R}^\text{2}+\text{PF}_{\text{e}}$ (b). Hydrogen atoms are omitted for the sake of clarity.](image)](image)

In summary, two 2[rotaxanes and one 2[pseudorotaxane have been prepared and their solid-state (super)structures have been obtained. Close examination of these (super)structures indicates that the geometries of the 2[rotaxanes and 2[pseudorotaxane in the solid state are stabilized, not only by the $[\pi\cdots\pi]$, $[\text{C}^\cdots\text{H}^\cdots\pi]$, and $[\text{C}^\cdots\text{H}^\cdots\text{O}]$ interactions between the dumbbells and the CBPQT$^\text{4+}$ rings, but also by the participation of solvent molecules and counterions in hydrogen bonding. Yet again, the importance of counterions in dictating the solid-state superstructures of rotaxanes and pseudorotaxanes is clearly evident.

Acknowledgments

The research was supported by the US National Science Foundation (NSF) under grant number CHE-0924620.

Supplementary Data

Supplementary data (detailed synthetic procedures, characterization, crystal figures) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.XXX.

References and notes

