<table>
<thead>
<tr>
<th>Title</th>
<th>Synthesis and improved electrochemical properties of Li2MnSiO4 cathodes (Main article)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Aravindan, Vanchiappan; Karthikeyan, K.; Lee, J. W.; Srinivasan, Madhavi; Lee, Y. S.</td>
</tr>
<tr>
<td>Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/7019</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 IOP Publishing Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Physics D: Applied Physics, IOP Publishing Ltd. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1088/0022-3727/44/15/152001.</td>
</tr>
</tbody>
</table>
Synthesis and improved electrochemical properties of Li$_2$MnSiO$_4$ cathodes

V Aravindana,b, K Karthikeyanc, J W Leec, S Madhavib,d and Y S Leec,e

aThe Research Institute for Catalysis, Chonnam National University, Gwang-ju 500-757, South Korea

bEnergy Research Institute, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Singapore 637553, Singapore

cFaculty of Applied Chemical Engineering, Chonnam National University, Gwang-ju, 500-757, South Korea

dSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

eAuthor to whom any correspondence should be addressed. E-mail: leeys@chonnam.ac.kr (Y S Lee) and aravind_van@yahoo.com (V Aravindan)

Abstract

Superior performance Li$_2$MnSiO$_4$ cathodes with flower-like morphology are prepared by hydrothermal route for the first time. An x-ray diffraction pattern confirms the formation of the orthorhombic structure with $Pmn2_1$ space group. The prepared Li$_2$MnSiO$_4$ materials are subjected to heat treatment at 700°C to achieve complete crystallization in the presence of adipic acid. The Li/ Li$_2$MnSiO$_4$ cells delivered an initial discharge capacity 73 and 100 mAh g$^{-1}$ for as-synthesized and heat-treated Li$_2$MnSiO$_4$, respectively. It is surprising to note that heat-treated Li$_2$MnSiO$_4$ exhibits more stable and superior cycling performance than reported values elsewhere, which is due to the unique morphology as well as carbon coating derived from the carbonization of adipic acid.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is increasing interest in the development of cathode materials to replace commercially available toxic and expensive LiCoO$_2$ with high capacity. Regarding capacity, there is a severe imbalance between anode and cathode performance. Commercial carbonaceous anodes essentially serve as buffer Li-storage capacity which must be tuned to the inadequate capacity of selected cathode material. This clearly indicates that the route to any substantial advance in Li-ion battery performance must obviously lie in the direction of improving or searching for new cathodes [1]. Since the demonstration of electrochemical reversibility in polyanion framework materials, particularly in olivine phosphates (LiMPO$_4$, M = Fe, Mn, Co and Ni), considerable attention has been focused towards the development of such framework materials [2,3]. Olivine phosphates have severely suffered from poor rate performance due to their inherent conducting
properties and limited capacities. Among the olivine phase materials LiFePO₄ is noteworthy due to its appealing properties such as very stable electrochemical behaviour, excellent thermal stability, cost effectiveness, safety and eco-friendliness. To achieve such performance, the conductivity issue was circumvented by introducing surface modification such as carbon coating [3]. Similar to that of olivine phosphates, the orthosilicates (Li₂M₄Si₄O₁₂, where M = Fe, Mn and Co) family of materials are also attracting candidates, particularly Li₂MnSiO₄ due to its overwhelming advantages such as cell safety, possibility of extraction of more than one Li⁺ ion per unit formula, high theoretical capacity (333 mAh g⁻¹) V vs Li⁺/Li, eco-friendliness, ease of preparation and cost effectiveness [4–9]. Moreover, the orthosilicate group materials render excellent thermal stability offered through strong Si–O bonding. Provided that the aforementioned advantages and structure of this compound are stable, a reversible exchange of up to two lithium ions per formula unit (possible exploration of Mn²⁺/Mn³⁺ and Mn³⁺/Mn⁴⁺ redox couples) would be feasible. Although, Li₂MnSiO₄ materials also suffered similarly to olivine phosphates, with likely poor electronic conductivity and worse electrochemical behaviour [5–15]. The advantage of the hydrothermal approach is to prepare high surface area materials with desired morphology under relatively lower temperature conditions than with conventional solid state or sol–gel techniques. Taking this advantage into account, an attempt has been made to explore the possibility of using Li₂MnSiO₄ cathodes, prepared for the first time with the above approach. However, Dominko et al [5] failed in their attempt to prepare Li₂MnSiO₄ cathodes hydrothermally, whereas they succeeded for the case of Li₂FeSiO₄, when water was used as the solvent. Later, Lyness et al [16] successfully prepared the phase pure Li₂CoSiO₄ by introducing ethylene glycol (EG) into water (1: 2 volume ratio). This is the same strategy we applied here for the successful preparation of Li₂MnSiO₄ using EG and water medium.

2. Experimental

In the typical hydrothermal synthesis, 0.05 mol LiOH.H₂O was added to 0.0125 mol SiO₂ in 20 ml of distilled water and stirred. Separately, 0.0125 mol MnCl₂.4H₂O was added to 10 ml of ethylene glycol and stirred until dissolution occurred. The two solutions were then mixed by stirring and kept for 1 h. Then, the slurry was transferred to a 40 ml Teflon-lined stainless-steel autoclave. The remaining volume was topped up with distilled water. The sealed autoclave was heated at 150 °C for 48 h and the resultant product was filtered off and dried at 60 °C overnight. Then the product was mixed with adipic acid and heat treated at 700 °C in Ar atmosphere for complete crystallization as well as for carbon coating. The detailed description of the characterization and cell assembly was described in our previous works [14–16] or elsewhere [17]. Briefly, x-ray diffraction (XRD, Rint 1000, Rigaku, Japan) measurements were carried out for structural analysis using CuKα radiation. Morphological studies were made using scanning electron microscope (FE-SEM, S-4700, Hitachi, Japan). Electrochemical impedance spectroscopy (EIS) analysis was conducted using a Bio-Logic, France, electrochemical work station. All the electrochemical measurements were carried out in the CR2032 coin-type cell configuration. The composite cathode was fabricated under the optimized conditions of 12 mg accurately weighed active material, 11 mg of ketjen black and 3 mg of conductive binder (Teflonized acetylene black, TAB). The mixture was pressed on a 200 mm² stainless-steel mesh which served as the current collector and the prepared electrodes were dried at 130 °C for 5 h in a vacuum oven. The coin cell was made up of a cathode and metallic lithium as anode, which was separated by a porous polypropylene film (Celgard 3401). The 1M LiPF₆ in a mixture of ethylene carbonate (EC)/dimethyl carbonate (DMC) (1: 1 v/v, Techno Semichem Co., Ltd, Korea)
was used as electrolyte. The cycling studies were carried out between 1.5 and 4.8 V at ambient temperature with constant current density of C/20.

3. Results and discussion

Figure 1 represents the powder XRD pattern of Li$_2$MnSiO$_4$ electrodes. Both, as-prepared (hereafter denoted as bare Li$_2$MnSiO$_4$) and heat-treated electrode (hereafter denoted as Li$_2$MnSiO$_4$/C) exhibited reflections with some small variation in the intensities. The appearances of satellite crystalline peaks are indexed with the orthorhombic structure with a P$mn2_1$ space group [5–9]. There are no reflections corresponding to the starting materials used for this synthesis. Till now, the structural properties of Li$_2$MnSiO$_4$ are unclear and it depends on the synthesis conditions and starting materials used. Several authors claimed the existence of three kinds of polymorphs for Li$_2$MnSiO$_4$ which comprises P$mn2_1$, Pmn and P$2_1/n$ space groups, respectively, [10]. For example, Dominko et al [11] reported Li$_2$MnSO$_4$ having Pmn space group at 900°C (all the synthesis routes, solid-state, sol–gel, hydrothermal, etc), Politaev et al [12] reported the existence of the P$2_1/n$ space group by solid-state reactions at 750–1150°C, and Belharouak et al [8] also claimed the existence of the P$mn2_1$ space group at 800°C by the sol–gel route. In the present case, the crystalline peaks are indicative of the orthorhombic structure, which is analogous to the Li$_3$PO$_4$ pattern and exhibiting the P$mn2_1$ space group [10]. The Li$_2$MnSiO$_4$ can be isostructural to certain forms of Li$_3$PO$_4$: Mn$^{2+}$ ions are present within a [SiO$_4$] anionic silicate network that replaces [PO$_4$] anionic phosphate network, and two Li ions are available in 3D channels. Further, we believe that the strong Si–O bond translates very stable electrochemical and thermal properties, i.e. safety issues. However, the impurity phases such as MnO and less amount of Li$_2$SiO$_3$ are also unavoidably present in all the phases prepared. A similar kind of impurity phase was also noticed by the researchers during synthesis of Li$_2$MnSiO$_4$ powders by various approaches or atmospheric conditions [5–14]. Based on the previous reports and this study it is confirmed that the preparation of phase-pure Li$_2$MnSiO$_4$ is a complicated one.

Figure 2 represents the morphological features of bare Li$_2$MnSiO$_4$ and Li$_2$MnSiO$_4$/C. The flower-like morphology is formed during the nucleation growth in the presence of ethylene glycol and water under hydrothermal treatment. It is apparent that the bare Li$_2$MnSiO$_4$ flower showed smoother morphology than the heat-treated one. In the case of Li$_2$MnSiO$_4$/C, it appeared as highly crystallized along with some tiny crystals bounded between the flower petals. As expected, such morphology may translate into good electrochemical properties due to its high surface area, unique morphology and high interconnection with nearest neighbouring particles rather than the conventional particles, for diffusion of Li$^+$ ions.

The cell performance of the bare Li$_2$MnSiO$_4$ and Li$_2$MnSiO$_4$/C material is presented in figure 3. The cells delivered the initial discharge capacities 73 and 100 mAh g$^{-1}$, respectively, for bare Li$_2$MnSiO$_4$ and Li$_2$MnSiO$_4$/C electrodes at C/20 rate against lithium. The cycling profiles of the Li/ Li$_2$MnSiO$_4$/C are very stable (∼100 mAh g$^{-1}$) for the observed 40 cycles when compared with the bare Li$_2$MnSiO$_4$ material with cumbolic efficiency over 95%. At the same time, bare Li$_2$MnSiO$_4$ experiencing the continuous capacity fade for a few initial cycles presented a lower discharge capacity profile (30 mAh g$^{-1}$). Such improvement and excellent cycling performance may be ascribed to the carbonization of gelating agent, which forms a thin layer of carbon on the surface of the parent material. In addition, the crystallization of such particles cannot be excluded during high temperature sintering. Until now, no work has been reported for such stability even
around for 100 mAh g\(^{-1}\) [5–14]. Further, these results are comparable to other eco-friendly cathode materials for the place of toxic LiCoO\(_2\) [19]. As mentioned above, the Li\(_2\)MnSiO\(_4\) materials (3 × 10\(^{-14}\) S cm\(^{-1}\) [6]) have also suffered from their inherent conducting properties. The carbonization of gelating agent or, in other words, the carbon coating, provides the improved electronic conductivity for Li\(_2\)MnSiO\(_4\)/C [14, 15, 17]. The presence of carbon provides excellent interconnectivity between nearest neighbouring particles, which allows faster diffusion of Li\(^+\) ions into the host during the cycling process or in other words, the improvement in kinetic properties [17, 18]. However, in this study, we are not able to realize the extraction of more than one Li\(^+\) ion in both cases. Generally, spherical size morphology is preferred for real time applications, which has a profound effect on the formulation of the high-speed process with sufficient contact with other cell components (binder and towards current collector). Flower-like morphology provides slower kinetics due to the wing-like shape. At the same time, stable electrochemical stability Li\(_2\)MnSiO\(_4\) has been achieved by hydrothermal synthesis. A detailed investigation is underway to tune the morphology to spherical shape with an expectation of a similar kind of stability and marching beyond one Li\(^+\) ion extraction.

In order to realize the effects of heat treatment/carbon coating on the electrical conductivity of Li\(_2\)MnSiO\(_4\), ac impedance measurements were conducted and presented in figure 4. The high-frequency semicircle is ascribed to solid electrolyte interface and/or contact resistance, the semicircle in the medium-frequency region is assigned to the charge-transfer (CT) impedance on the electrode/electrolyte interface, and the inclined line at an approximate 45\(^{\circ}\) angle to the real axis corresponds to the lithium diffusion kinetics towards the electrodes [20]. It could be seen that the diameter of the semicircle in the medium-frequency region for the heat-treated electrode is much smaller than the as-prepared one, revealing a lower CT impedance and indicating that the electronic conductivity of the Li\(_2\)MnSiO\(_4\)/C was dramatically improved after carbon coating and the presence of carbon, which significantly improved cycling performance of the cell.

4. Conclusion

To conclude, the hydrothermal route was employed for the successful preparation of Li\(_2\)MnSiO\(_4\) materials with flower-like morphology. X-ray reflections confirmed the orthorhombic structure with the \(Pmn2_1\) space group. The heat-treated Li\(_2\)MnSiO\(_4\) exhibited superior performance in terms of its electrochemical stability of \(\sim 100\) mAh g\(^{-1}\) and it was achieved by crystallization as well as carbon coating via gelating agent. The improvement in the electronic conductivity was validated through electrochemical impedance spectroscopy.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0029626).
References

[3] Li Z, Zhang D and Yang F 2009 Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material J. Mater. Sci. 44 2435–443

[7] Dominko R 2008 Li2MSiO4 (M = Fe and/or Mn) cathode materials J. Power Sources 184 462–8

[16] Lyness C, Delobel B, Armstrong A R and Bruce P G 2007 The lithium intercalation compound Li₂CoSiO₄ and its behaviour as a positive electrode for lithium batteries Chem. Commun. 4890–2

[19] Fergus J W 2010 Recent developments in cathode materials for lithium ion batteries J. Power Sources 195 939–54

List of Figures

Figure 1. XRD patterns of hydrothermally synthesized Li$_2$MnSiO$_4$.

Figure 2. Scanning electron microscopic pictures of (a) as-synthesized and (b) heat-treated Li$_2$MnSiO$_4$.

Figure 3. (a) Charge-discharge traces and (b) the cycling profile of Li/ Li$_2$MnSiO$_4$ cell at ambient temperature with columbic efficiency (Open symbols—charge capacity and filled symbols—discharge capacity).

Figure 4. Electrochemical impedance spectroscopy (EIS) plots of Li$_2$MnSiO$_4$ electrodes.
Figure 1
Figure 3
Figure 4