<table>
<thead>
<tr>
<th>Title</th>
<th>Proposal for a micromachined dynamically tuned gyroscope, based on contactless suspension (Journal Article)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Poletkin, Kirill V.; Chernomorsky, Alexandr I.; Shearwood, Christopher</td>
</tr>
<tr>
<td>Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/7363</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [DOI: http://dx.doi.org/10.1109/JSEN.2011.2178020].</td>
</tr>
</tbody>
</table>
A Proposal for Micromachined Dynamically Tuned Gyroscope, Based on Contactless Suspension

Kirill V. Poletkin, Member, IEEE, Alexsand I. Chernomorsky, and Christopher Shearwood

Abstract—In this paper, the operating principle of a micromachined, dynamically tuned gyroscope, based on a contactless suspension is discussed and its mathematical model is derived. Dynamical analysis based on this mathematical model is conducted. The analysis shows that such a gyroscope can be created in principal and provides a value for the gyroscope gain to measuring angular rate which is several orders of magnitude greater in comparison with existed prototypes of the micromachined gyroscopes based on a contactless suspension.

Index Terms—gyroscope; micro-electro-mechanical system; rotor tuning condition; inertial sensors.

I. INTRODUCTION

MICROMACHINED GYROSCOPES (MMG) have already attracted a great deal of attention giving rise to a new generation of inertial sensors for measuring angular rate with significant small-size, lower-weight, lower - power consumption, lower-cost, higher reliability, and compatibility with hostile environments. Advantages of MMG allow them to be deployed in a wide range of applications such as ride stabilization and rollover detection in automotive area; consumer electronic application, such as video-camera stabilization, virtual reality, and inertial mice for computer; robotics applications; children’s toys; a wide range of military applications, and etc. [1], [2]. In fact, the achieved performance level of MMG is rate-grade as a result of developments over the last decade [3]. However, the rapidly increasing list of MMG applications requires tactical- and inertial-grade performance levels which represent a formidable challenge.

Almost all MMG can be described as a mechanical oscillator in which a silicon Proof Mass (PM) is vibrated sinusoidally in plane to form the Coriolis force acting on the PM which is caused by the rotation of that plate at some angular rate. In this case, the MMG consists of the PM that transforms the measuring angular rate to its linear or angular displacement and a system of Spring Elements (SE) which provides the established degrees-of-freedom to the PM.

It is significant that there is a mechanical link between the PM and the case of the gyroscope and, as a result, reduce the influence that these error sources produce on the output of the MMG. Although a number of unique solutions have been suggested to provide a CS, most methods used in the MMG are based on either electromagnetic induction [10] or electrostatic suspension [11]. As well as allowing passive suspension, these schemes also provide a mechanism for the rotation of the PM to high angular velocities, often only limited by viscous drag. For example, it has been reported that for a disk-shape rotor, of diameter 0.5 mm, the maximum possible speed of rotation achievable in air is 100,000 RPM [12]. Note, that in vacuum, the maximum possible speed of rotor rotation can be significantly greater than in air due to the reduction of viscous drag.

The first prototype of a micromachined Inductive CS (ICS) was described in [10] with some experimental results and a suggested application as a MMG. Additional experimental results of the MMG based on the same ICS concept, in which the rotation of disk-shaped rotor with speed of \(\approx 1000 \text{ RMP} \) in air was provided, were presented in [13]. A modified version of the ICS was proposed in [14] based on a rotation of the disk-shaped rotor with a speed of \(\approx 3000 \text{ RMP} \) in vacuum.

The application of Electrostatic CS (ECS) in MMG has been studied by Tokimec and Tohoku universities since 1993. They developed different prototypes of MMG based on ECS, whose rotors were disc-shaped and ring-shaped and which detected 3-axis linear acceleration and 2-axis angular rate. In the prototype, a rotation speed of 10,000 RMP was achieved for a 5 mm diameter silicon, ring-shaped rotor [15].

However, in prototypes of MMG based on CS, the speed of rotation of the gyroscope rotor is far from the maximum theoretical value. As a result, the highest accuracy of angular rate measurement cannot be achieved.

Since the mechanism that provides the CS also makes possible rotation of MMG rotor, an alternative strategy for improving the accuracy of such gyroscopes is the development of a dynamically tuned gyroscope, in which the angular
stiffness supported by a CS is used. It is possible, given the
experimentally achieved speed of rotor rotation in currently
developed MMG based on CS, and under meeting the rotor tuning condition, that an increased gyroscope gain would lead to several orders of magnitude improvement in the measured angular rate.

In this paper, the operating principle of a micromachined, Dynamically Tuned Gyroscope (DTG) based on a CS is considered and its mathematical model developed. Based on this model, the dynamical analysis of a micromachined DTG is conducted. This analysis allows us to evaluate the anticipated gyroscope gain of such a micromachined DTG to the measurement of angular rate. In particular, a comparative analysis between the gyroscope gain of the micromachined DTG and the developed prototype of a MMG based on ICS [13] is conducted. It shows that the micromachined DTG gain, evaluated at a rotor rotation speed of 1000 RMP, is five orders of magnitude greater than gyroscope gain of a MMG based on ICS alone.

II. KINEMATICS AND OPERATING PRINCIPLE

The kinematics of a micromachined DTG are illustrated in Fig 1. The micromachined DTG consists of two rotors, namely an inner and outer one, that are linked together by a pair of torsional springs. The inner rotor is located within an electromagnetic field and suspended there contactlessly at its equilibrium position. Both rotors are considered as rigid bodies in this study. The position of the center of mass of the inner rotor is characterized by the origin O which is also the origin of the coordinate frame (CF) XYZ, fixed to the gyroscopic case. Rotation of the rotor system, with respect to the gyroscopic case, is provided by the rotating electromagnetic field with a steady angular rate Ω along the Z axis. The Z axis is set as the gyroscopic rotational axis. Let us define the rotating CF $x_r y_r z_r$, which is rotated together with the rotating electromagnetic field and the origin of which coincides with the origin O. The Z and z_r axes are coincident, geometrically. In this study, a steady state is assumed, therefore the speed of the rotating electromagnetic field and rotors are the same and equal to Ω along the Z axis under the absence of the measuring angular rate (the unperturbed state). In the unperturbed state, the x_r axis of the rotating CF coincides with the axis of torsions as shown in Fig 1. It is assumed that the static and dynamic unbalances of the rotors and their linear displacements are negligible and the centers of the rotors inertia coincides with the origin O.

Let us assign a CF $x_1 y_1 z_1$ to the inner and a CF xyz to the outer rotors so that the axes of these CF coincide with the principal axes of inertia of the rotors, respectively, and the x_1 and x axes are directed along the axis of the torsional springs, illustrated in Fig 2. The position of the CF $x_1 y_1 z_1$ with respect to the rotating CF $x_r y_r z_r$ is defined by the angles q_1 and q_2, and the position of the CF xyz by the angles q_1 and q_3, respectively.

Note that the angular coordinate q_2 defines the angular displacement of the inner rotor relative to the x_1 axis and the angle between the surfaces $x_1 z_r$, and $x_1 z_1$ or $x_1 y_r$, and $x_1 y_1$. While the angular coordinate q_3 defines the angular displacement of the outer rotor relative to the x axis and the angle between surfaces $x_1 z_r$, and $x z$ or $x_1 y_r$, and $x y$. It is seen that angular coordinates q_2 and q_3 are independent of each other, since the surfaces $x_1 z_r$, and $x_1 y_1$ do not take part in the angular displacement of the inner as well as the outer rotors.

The rotation of the gyroscopic case with the measuring angular rate, which is defined by vector ϖ lying on the XY surface of the micromachined DTG and having projections ω_X and ω_Y along axes X and Y, respectively induces motion in the outer rotor relative to the output axes y_r and x (characterized by angular coordinates q_1 and q_3, respectively) which characterizes the value of the measuring input angular rate ϖ.

To define the position of the outer rotor with respect to the fixed CF XYZ, let us introduce the angles α and β which
characterize the position of the \(xy \) surface with respect to the CF \(XYZ \) as shown in Fig. 3(a). The angle \(\alpha \) defines the angular displacement of the outer rotor relative to the \(X \) axis.

The angle \(\beta \) defines the angular displacement of the outer rotor relative to the \(Y' \) axis which lies on the \(YZ \) surface.

Since it is assumed that angular displacements \(q_1, q_3, \alpha \) and \(\beta \) are small, so the dedicated triangles inFig. 3(b) can be considered as plane triangles, and the angles between the sides of the triangles \(q_1, q_3 \) and \(\alpha, \beta \) are 90°; hence the relationship between angles \(q_1, q_3 \), \(\alpha \) and \(\beta \) can be written as:

\[
\begin{align*}
\alpha &= q_3 \cos \Omega t - q_1 \sin \Omega t; \\
\beta &= q_1 \sin \Omega t + q_3 \cos \Omega t.
\end{align*}
\]

Thus, the angular displacements of the outer rotor with respect to the rotating CF (characterized by \(q_1, q_3 \)) as well as the fixed CF (characterized by \(\alpha, \beta \)) are the measure of the input rotation of a gyroscope case or the input rates which can be finally transformed into the electrical output signal by mean of capacitive angular sensors.

III. MATHEMATICAL MODEL

To develop a mathematical model of the micromachined DTG the second kind Lagrange’s equations are used. In the framework of the problem, the micromachined DTG has four-degrees-of-freedom: the angle of rotors spin \(\Omega t \) and angles of rotations of rotors \(q_1, q_2 \) and \(q_3 \) relative to the rotating CF.

The angle \(\Omega t \) is a cyclical angle; with a constant value of \(\Omega \), it allows us to construct the following three equations for the description of the micromachined DTG motion, taking \(q_1, q_2, \) and \(q_3 \) as the generalized coordinates. Hence, we can write:

\[
\begin{align*}
\frac{d}{dt} \frac{\partial T}{\partial q_i} - \frac{\partial T}{\partial q_i} &= -\frac{\partial \Pi}{\partial q_i} - \frac{\partial \Phi}{\partial q_i}, \\
(i &= 1, 2, 3),
\end{align*}
\]

where \(T \) and \(\Pi \) are the kinetic and potential energies of the system; \(\Phi \) is the dissipation function; \(q_i, \dot{q}_i \) are the generalized coordinates and velocities, respectively.

The kinetic energy of the system under consideration is the sum of the kinetic energies of the inner and outer rotors and can be written as:

\[
T = \frac{1}{2} \left(J_{x1} \omega_{x1}^2 + J_{y1} \omega_{y1}^2 + J_{z1} \omega_{z1}^2 \right) + \frac{1}{2} \left(J_x \omega_x^2 + J_y \omega_y^2 + J_z \omega_z^2 \right),
\]

where \(J_{x1}, J_{y1}, J_{z1} \) and \(\omega_{x1}, \omega_{y1}, \omega_{z1} \) are the three central principal moments of inertia about the \(x_1, y_1, z_1 \) axes and projections of angular rate of the inner rotor on the same axes, respectively; \(J_x, J_y, J_z \) and \(\omega_x, \omega_y, \omega_z \) are the three central principal moments of inertia about the \(x, y, z \) axes and projections of angular rate of the outer rotor on the same axes, respectively.

According to the kinematics of the micromachined DTG, for projections of angular rates of rotors on axes of CF \(x, y, z \) and \(x_1 y_1 z_1 \), the following equations are true:

\[
\begin{align*}
\omega_{xr} &= \omega_X \cos \Omega t + \omega_Y \sin \Omega t; \\
\omega_{yr} &= -\omega_X \sin \Omega t + \omega_Y \cos \Omega t; \\
\omega_{zz} &= \Omega; \\
\omega_{x1} &= \omega_{xr} \cos q_1 - \omega_{zr} \sin q_1 + \dot{q}_2; \\
\omega_{y1} &= \left(\omega_{yr} + \dot{q}_1 \right) \cos q_2 \\
&+ \left(\omega_{x1} \sin q_1 + \omega_{z1} \cos q_1 \right) \sin q_2; \\
\omega_{z1} &= -\left(\omega_{x1} \sin q_1 + \omega_{z1} \cos q_1 \right) \sin q_2; \\
\omega_{x} &= \omega_{xr} \cos q_1 - \omega_{zr} \sin q_1 + \dot{q}_3; \\
\omega_{y} &= \left(\omega_{yr} + \dot{q}_1 \right) \cos q_3 \\
&+ \left(\omega_{x} \sin q_1 + \omega_{z1} \cos q_1 \right) \sin q_3; \\
\omega_{z} &= -\left(\omega_{x} \sin q_1 + \omega_{z1} \cos q_1 \right) \sin q_3.
\end{align*}
\]

The CS provides the angular displacement of the inner rotor with the finite angular stiffness which is the same for all equatorial axes of the rotor; the value of this stiffness is
denoted by \(c_s \). Hence, the potential energy of system can be written as follows:
\[
\Pi = \frac{1}{2} c_s q_1^2 + \frac{1}{2} c_s q_2^2 + \frac{1}{2} c_t (q_1 - q_2)^2,
\]
where \(c_t \) is the stiffness of the torsional springs.

The dissipation function is described as:
\[
\Phi = \frac{1}{2} k_x q_1^2 + \frac{1}{2} k_x q_2^2 + \frac{1}{2} k_t (\dot{q}_3 - \dot{q}_2)^2,
\]
where \(k_x \) and \(k_t \) are the damping coefficients of the CS and the torsional springs, respectively. To write the linear mathematical model of the micromachined DTG, let us substitute (7) and (8) into Eq. (2). Since the angles \(q_1, q_2 \) and \(q_3 \) are small, second order terms can be neglected and the mathematical model describing the motion relative to the rotating CF can be written as:
\[
\begin{align*}
(J_{y_1} + J_{y})\ddot{q}_1 + k_x q_1 + c_s \left[\left(J_{z_1} + J_{z} \right) \right] \Omega^2 q_1 \\
+ \left(c_s + \left[\left(J_{z_1} + J_{z} \right) \right] \Omega^2 \right) \dot{q}_1 \\
- \left(J_{z_1} - J_{z} \right) \Omega \dot{q}_2 \\
- \left(J_{z} - J_{z_1} \right) \Omega \dot{q}_3 = m_q; \quad (9)
\end{align*}
\]
\[
\begin{align*}
(J_{z_1} - J_{z}) \Omega \dot{q}_1 + J_{x_1} \dot{q}_2 + (k_x + k_t) \dot{q}_2 \\
+ \left(c_s + \left[J_{z_1} - J_{z} \right] \Omega^2 \right) q_2 \\
- k_t \dot{q}_3 - c_r q_2 = m_q; \\
\end{align*}
\]
\[
\begin{align*}
(J_{z} - J_{y}) \Omega \dot{q}_1 + J_{x_1} \dot{q}_2 + k_t \dot{q}_3 \\
+ J_{x_2} q_3 + c_t \left[J_{z} - J_{y} \right] \Omega \dot{q}_3 = m_q; \\
\end{align*}
\]
where
\[
\begin{align*}
m_q &= \left(J_{z_1} + J_{z} \right) \Omega \left(\left(J_{z_1} + J_{z} \right) \Omega \sin \Omega t \right) + \left(J_{x_1} + J_{x} \right) \Omega \sin \Omega t; \\
m_q &= \left(J_{z_1} + J_{z} \right) \Omega \left(\left(J_{z_1} + J_{z} \right) \Omega \cos \Omega t \right) + \left(J_{x_1} + J_{x} \right) \Omega \cos \Omega t; \\
m_q &= \left(J_{z} + J_{x} \right) \Omega \left(\left(J_{z} + J_{x} \right) \Omega \sin \Omega t \right) + \left(J_{x_1} + J_{x} \right) \Omega \sin \Omega t.
\end{align*}
\]

Note that if the angular displacements of the inner rotor \(q_1 \) and \(q_2 \), relative to the \(y_r \) and \(x_1 \) axes, respectively, are absent (\(q_1 = q_2 = 0, \dot{q}_1 = \dot{q}_2 = 0 \)), the last equation of set (9) describes the dynamics of a rotor vibratory gyroscope exactly [16]–[20]. On the other hand, if only the angular displacement of the inner rotor \(q_2 \) relative to the \(x_1 \) axis is absent (\(q_2 = 0, \dot{q}_2 = 0 \)), the first and third equations of set (9) are the same as a classic model of a dynamically tuned gyroscope with gimbal [18], [21], [22].

IV. MODIFICATION OF THE MODEL

From a practical viewpoint, let us analyze the motion of the micromachined DTG for the case which follow from the analysis of the experimental study of the MMG prototypes based on CS [13], [15], [23]. For this case the following assumptions can be made:
\[
J_x = J_y < J_z; \quad J_{x_1} = J_{y_1} < J_{z_1}.
\]

Also, the measuring angular rate vector \(\omega \) is steady and its projections are \(\omega_X = \text{const}_1; \omega_Y = \text{const}_2 \).

For further analysis, model (9) can be rewritten as follow:
\[
\begin{align*}
J^2 \ddot{q}_1 + k_x \ddot{q}_1 + C_{d_1} q_1 + h_1 \dot{q}_2 + h_3 = m_q; \\
- h_1 \ddot{q}_1 + J_x \ddot{q}_2 + 2(k_x + k_t) \dot{q}_2 + C_{d_2} q_2 \\
- k_t \dot{q}_3 - c_t q_3 = m_q; \\
- h_3 - k_t \dot{q}_2 - c_t q_3 \\
+ J_x \dot{q}_3 + k_t \dot{q}_3 + C_{d_3} q_3 = m_q; \\
\end{align*}
\]
where
\[
\begin{align*}
m_q &= J_{x_1} \Omega \left(\omega_X \cos \Omega t + \omega_Y \sin \Omega t \right); \\
m_q &= J_x \Omega \left(\omega_X \sin \Omega t - \omega_Y \cos \Omega t \right); \\
m_q &= J_{x_1} \Omega \left(\omega_X \sin \Omega t - \omega_Y \cos \Omega t \right).
\end{align*}
\]

and \(J = J_{y_1} + J_y; h_1 = \left(2J_{y_1} - J_y \right) \Omega; h = \left(2J_y - J_z \right) \Omega; C_{d_1} = c_s + \left(J_{z_1} - J_{z} \right) \Omega^2; \\
C_{d_2} = c_s + \left(J_{x_1} - J_{x} \right) \Omega^2; C_{d_3} = c_t + \left(J_{z} - J_{y} \right) \Omega^2.
\]

It is assumed that the value of angular stiffness of the CS is much greater than value of the dynamic stiffness and the following inequalities become true:
\[
\begin{align*}
c_s \gg \left(J_{z_1} + J_{x} \right) - (J_{x_1} + J_{x}) \Omega^2; \\
c_s \gg c_t.
\end{align*}
\]

If conditions (14) are satisfied, the CS is best described as "hard". Due to (14) and the fact, that the value of the moment of inertia of the inner rotor is less than the value of one of the outer rotor, the influence of the motion of the inner rotors relative to the \(x_1 \) axis on the motion of the outer rotor is considered negligible. Hence, the mathematical model (12) can be simplified as follow:
\[
\begin{align*}
J \ddot{q}_1 + k_x \ddot{q}_1 + C_{d_1} q_1 + h_3 = m_q; \\
- h_1 \ddot{q}_1 + J_{x_1} \ddot{q}_2 + 2(k_x + k_t) \dot{q}_2 + C_{d_2} q_2 \\
- k_t \dot{q}_3 - c_t q_3 = m_q; \\
- h_3 - k_t \dot{q}_2 - c_t q_3 \\
+ J_{x_1} \dot{q}_3 + k_t \dot{q}_3 + C_{d_3} q_3 = m_q. \\
\end{align*}
\]

Note that the model described by set (15) is similar to the model of the rotor vibratory gyroscope considered in [24].

New variables are introduced:
\[
U = q_1 \sqrt{J}; \quad V = q_3 \sqrt{J_x}.
\]

Using the variables defined in Eq. (16), set (15) can be rewritten as:
\[
\begin{align*}
\ddot{U} + \mu_1 U + m_1 U + n V = \frac{1}{\sqrt{J}} m_q; \\
- n \ddot{U} + V + \mu_3 V + m_3 V = \frac{1}{\sqrt{J_x}} m_q;
\end{align*}
\]
where \(\mu_1 = k_x / J; \mu_3 = k_t / J; \mu_1 = C_{d_1} / J; \mu_3 = C_{d_3} / J; n = h / \sqrt{J_x J} \). Taking Laplace transformations of (17), under zero initial conditions, set (17) can be written in a complex notation as follow:
\[
\begin{align*}
(s^2 + \mu_1 s + m_1) U(s) + n s V(s) = \frac{1}{\sqrt{J}} m_q(s); \\
- n s U(s) + (s^2 + \mu_3 s + m_3) V(s) = \frac{1}{\sqrt{J_x}} m_q(s),
\end{align*}
\]
where s is the Laplace operator. The solution of set (18) is:

$$U(s) = \frac{1}{(s^2 + \mu_3 s + m_3)^2} m_{q1}(s) - n s \frac{1}{\sqrt{J_x}} m_{q3}(s);$$

$$V(s) = \frac{1}{(s^2 + \mu_1 s + m_1)^2} \frac{1}{\sqrt{J_x}} m_{q3}(s) + n s \frac{1}{\sqrt{J_x}} m_{q1}(s).$$

Thus, Eq. (19) describes the motion of the micromachined DTG relative to the rotating CF in the “hard” CS case.

V. ANALYSIS OF THE MODEL

Let us study the behavior of the mathematical model of the micromachined DTG (19) under the presence of the measuring angular rate lying on the measuring surface of the gyroscope to define the micromachined DTG gain for the “hard” CS case, relative to both the rotating, as well as the fixed CF.

Equations (19) can be rewritten as:

$$q_1(s) = W_1(s) \frac{1}{\sqrt{J_x}} m_{q1}(s) - W_2(s) \frac{1}{\sqrt{J_x}} m_{q3}(s);$$

$$q_3(s) = W_2(s) \frac{1}{\sqrt{J_x}} m_{q1}(s) + W_3(s) \frac{1}{\sqrt{J_x}} m_{q3}(s),$$

where

$$W_1(s) = \frac{(s^2 + \mu_3 s + m_3)}{(s^2 + \mu_1 s + m_1)(s^2 + \mu_3 s + m_3) + n^2 s^2};$$

$$W_2(s) = \frac{(s^2 + \mu_1 s + m_1)(s^2 + \mu_3 s + m_3) + n^2 s^2}{(s^2 + \mu_1 s + m_1)(s^2 + \mu_3 s + m_3) + n^2 s^2};$$

$$W_3(s) = \frac{(s^2 + \mu_1 s + m_1)(s^2 + \mu_3 s + m_3) + n^2 s^2}{(s^2 + \mu_1 s + m_1)(s^2 + \mu_3 s + m_3) + n^2 s^2}.$$

It is considered that the measuring angular rate creates moments $m_{q1}(s)$, and $m_{q3}(s)$ acting on the inner and outer rotors with a frequency that is equal to the spin speed of the rotor Ω. Hence, let us substitute $j\Omega$ for s into (21), to study the magnitude and phase of these transfer functions. We have:

$$|W_1(j\Omega)| = \sqrt{\left(-\Omega^2 + m_3\right)^2 + \mu_3^2 \Omega^2};$$

$$\arg\left(W_1(j\Omega)\right) = \arctan\left(\frac{\mu_3}{\Omega - m_3}\right) - \arctan\left(\frac{(\mu_1 + \mu_3)\Omega^3 + (m_3\mu_1 + m_1\mu_3)\Omega}{\Omega^4 - (m_1 + m_3 + n^2 + \mu_1\mu_3)\Omega^2 + m_1 m_3}\right);$$

$$|W_2(j\Omega)| = \frac{n \Omega}{\sqrt{\left[\left(m_1 + m_3 + n^2 + \mu_1\mu_3\right)\Omega^2 + m_1 m_3\right]^2 + \left[(\mu_1 + \mu_3)\Omega^3 + (m_3\mu_1 + m_1\mu_3)\Omega\right]^2}};$$

$$\arg\left(W_2(j\Omega)\right) = \frac{\pi}{2} - \arctan\left(\frac{(\mu_1 + \mu_3)^3 + (m_3\mu_1 + m_1\mu_3)\Omega}{\Omega^4 - (m_1 + m_3 + n^2 + \mu_1\mu_3)\Omega^2 + m_1 m_3}\right);$$

$$|W_3(j\Omega)| = \frac{\sqrt{\left(-\Omega^2 + m_3\right)^2 + \mu_3^2 \Omega^2}}{\left[\Omega^4 - (m_1 + m_3 + n^2 + \mu_1\mu_3)\Omega^2 + m_1 m_3\right]^2 + \left[(\mu_1 + \mu_3)\Omega^3 + (m_3\mu_1 + m_1\mu_3)\Omega\right]^2};$$

$$\arg\left(W_3(j\Omega)\right) = \arctan\left(\frac{\mu_1}{\Omega - m_3}\right) - \arctan\left(\frac{(\mu_1 + \mu_3)^3 + (m_3\mu_1 + m_1\mu_3)\Omega}{\Omega^4 - (m_1 + m_3 + n^2 + \mu_1\mu_3)\Omega^2 + m_1 m_3}\right).$$

Applying $\omega_r = 0$ and taking into account (22), (23), and (24), equation (20) for the steady motion of the outer rotor of the micromachined DTG relative to the rotating (x_t, y_t, z_t) CF can be rewritten as:

$$q_1(t) = W_1(j\Omega) \frac{J_z + J_{z1}}{J_x} \omega x \cos \left(\Omega t + \arg\left(W_1(j\Omega)\right)\right) - |W_2(j\Omega)| \frac{J_z + J_{z1}}{J_x} \omega x \sin \left(\Omega t + \arg\left(W_2(j\Omega)\right)\right);$$

$$q_3(t) = W_3(j\Omega) \frac{J_z + J_{z1}}{J_x} \omega x \cos \left(\Omega t + \arg\left(W_3(j\Omega)\right)\right) + |W_2(j\Omega)| \frac{J_z + J_{z1}}{J_x} \omega x \sin \left(\Omega t + \arg\left(W_2(j\Omega)\right)\right);$$

Equations (25) describe the motion of the untuned gyroscope. To define the rotor tuning condition, let us assume that $\mu_1 = 0$, $\mu_3 = 0$ and, setting the denominator of transfer functions to zero, we have:

$$\Omega^4 - (m_1 + m_3 + n^2)\Omega^2 + m_1 m_3 = 0.$$

The solution of (26) are the two natural frequencies:

$$\Omega_1 = \sqrt{\frac{m_1 + m_3 + n^2 + \sqrt{(m_1 + m_3 + n^2)^2 - 4m_1 m_3}}{2}},$$

$$\Omega_2 = \sqrt{\frac{m_1 + m_3 + n^2 - \sqrt{(m_1 + m_3 + n^2)^2 - 4m_1 m_3}}{2}}.$$

Furthermore, let us define the parameters m_1, m_3 and n^2 as follow. The parameter m_1 can be written as:

$$m_1 = c_s / J + \kappa g,$$

where $\kappa_g = (J_z + J_{z1} - J_x - J_{x1}) / (J_x - J_{x1})$ is the gyroscopic constructive parameter. Parameters m_3 and n^2 can be expressed as:

$$m_3 = c_t / J_x + \kappa \Omega^2;$$

$$n^2 = J_x (1 - \kappa)^2 \Omega^2 / J,$$

where $\kappa = (J_z - J_x) / J_x$ is the outer rotor constructive parameter. Note, that both κ_g and κ are approximately equal to one. For example, the aluminium disc-shaped rotor whose diameter $500 \mu m$ and thickness $10 \mu m$ has a value of κ equal to 0.9998. According to (14) and the previous discussion, the following inequality between the parameters of the gyroscope can be written:

$$m_1 \gg m_3 \gg n^2.$$

In equations (27) and (28), Ω_1 is determined by the parameters of the CS and Ω_2 by the mechanical parameters of the torsional springs, respectively. Hence, to tune the micromachined DTG, the rotors spin speed Ω should be equal.
The speed of rotor spin which is satisfied by (32) is denoted by \(\Omega \). Accounting to (31), condition (32) can be written as:

\[
\tilde{\Omega} \approx \sqrt{m_3},
\]

or, using equation (30)

\[
\tilde{\Omega} \approx \sqrt{\frac{e_t}{J_x(1 - \kappa)}},
\]

The last equation is the classic condition for rotor tuning of a rotor vibratory gyroscope.

If the condition (32) is held, then the magnitude and phase of the transfer functions (22), (23) and (24) become:

\[
|W_1(j\tilde{\Omega})| \approx \frac{1}{m_1}; \ \arg(W_1(j\tilde{\Omega})) \approx 0;
\]

\[
|W_2(j\tilde{\Omega})| \approx \frac{n}{\mu_3m_1}; \ \arg(W_2(j\tilde{\Omega})) \approx 0;
\]

\[
|W_3(j\tilde{\Omega})| \approx \frac{1}{\mu_3\Omega}; \ \arg(W_3(j\tilde{\Omega})) \approx \arctan\left(\frac{\mu_1\Omega}{m_1}\right) - \frac{\pi}{2}.
\]

It is assumed that the values of the damping coefficients \(\mu_1 \) and \(\mu_3 \) are small. Hence, we can use \(\arg(W_3(j\tilde{\Omega})) = -\frac{\pi}{2} \). Substituting (35), (36), and (37) into (25), we have:

\[
q_1(t) = \frac{J_z + J_{z1}}{m_1J} \tilde{\Omega} \omega_X \cos(\tilde{\Omega}t); \]

\[
q_2(t) = -\frac{n}{\mu_3m_1} J_z \tilde{\Omega} \omega_X \sin(\tilde{\Omega}t); \]

\[
q_3(t) = -\frac{n}{\mu_3m_1} J_z + J_{z1} \tilde{\Omega} \omega_X \cos(\tilde{\Omega}t); \]

Equations (38) describe the steady motion of the outer rotor of the tuned micromachined DTG relative to the rotating CF. Note that in the second equation of set (38) the value of the second term is much less then the first one due to \(m_1 \gg n\tilde{\Omega} \) (see (29), (30) and (14)); hence it can be neglected.

Taking into account the steady motion of the outer rotor of the tuned micromachined DTG relative to the fixed (XYZ) CF can be written as follow:

\[
\alpha(t) = -K_y\omega_X \cos(2\tilde{\Omega}t) - K_{cc}\omega_X \sin(2\tilde{\Omega}t) - K_{ce1}\omega_X \cos(2\tilde{\Omega}t) - K_{ce2}\omega_X \sin(2\tilde{\Omega}t); \\
\beta(t) = -K_y\omega_X \sin(2\tilde{\Omega}t) + K_{ce1}\omega_X \cos(2\tilde{\Omega}t) + K_{ce2}\omega_X \cos(2\tilde{\Omega}t) - K_{cc}\omega_X \sin(2\tilde{\Omega}t); \\
\]

where \(K_y = \frac{J_z}{2\mu_3J} \) is the tuned micromachined DTG gyroscope gain for the “hard” CS case, \(K_{cc1} = \frac{J_z + J_{z1}}{2m_1J} \) and \(K_{cc2} = \frac{n}{\mu_3m_1} \frac{J_z + J_{z1}}{\sqrt{J_x}} \Omega \) are the cross-coupling coefficients.
rotor spin speed is equal to the natural frequency Ω. However, the second mode is not used in the developed prototypes of MMG and is therefore not considered here.

For the first mode $(\Omega \ll \Omega)$, we have:

$$\begin{align*}
|W_1(j\Omega)| & \approx \frac{1}{c_s} \; \text{arg} \,(W_1(j\Omega)) \approx 0; \\
|W_2(j\Omega)| & \approx \left(\frac{2J_{z1} - J_{z2}}{c_s^2} \right) \Omega^2 = \frac{J_{z1} (1 - \kappa_1) \Omega^2}{c_s^2};
\end{align*}$$

(49)

where $\kappa_1 = (J_{z1} - J_{z2})/J_{z1}$ is the constructive parameter of MMG. Hence,

$$|W_1(j\Omega)| \gg |W_2(j\Omega)|,$$

(50)

and the contribution of term $W_2(s)$ in Eq. (42) are negligible.

Then, for $\omega_s = 0$, the equations of angular displacements of a gyroscope rotor relative to the rotating CF are

$$\begin{align*}
q_1(t) &= \frac{J \Omega}{c_s} \omega_X \cos (\Omega t); \\
q_2(t) &= \frac{J \Omega}{c_s} \omega_X \sin (\Omega t);
\end{align*}$$

(51)

Substituting (51) into (1), let us write the equations of angular displacements of a gyroscope rotor relative to the fixed (XYZ) CF as follows:

$$\alpha = 0; \quad \beta = \frac{J \Omega}{c_s} \omega_X.$$

(52)

Following from (52), the gyroscope gain can be defined by:

$$K_g = \frac{J \Omega}{c_s},$$

(53)

To compare the gyroscope gain to the measuring angular rate of micromachined DTG and MMG based on CS, a dimensionless coefficient Ψ is introduced, as the ratio of a gyroscope gain of the micromachined DTG to the MMG based on CS. Taking into account (59), (53) and the notations adopted in (17); the coefficient Ψ can be written as:

$$\Psi = \frac{J \Omega}{2J_{z1} k_t \Omega},$$

(54)

As can be seen from (54), the dimensionless coefficient Ψ is dependent on the values of the principal moments of rotors. The larger the principal moment of rotor, the greater the gyroscope gain. Hence, this variable can be excluded from consideration and Eq. (54) becomes:

$$\Psi = \frac{c_s Q}{2k t \Omega}.$$

(55)

The damping coefficient of the torsional springs k_t is expressed in term of the quality factor, and then Eq. (55) can be rewritten as:

$$\Psi = \frac{c_s Q}{2J_{z1} \Omega^2},$$

(56)

where Q is the quality factor of the torsional springs - outer rotor oscillating system. The value of the quality factor in micromechanical silicon torsional springs is about $Q = 0.77$ to 1.37×10^5 [25]. Hence,

$$\Psi = 8.0 \times 10^{-11} \times 0.77 \times 10^5$$

$$\quad + \frac{2 \times 7.50 \times 10^{-16}}{10^5} \approx 3.70 \times 10^5 \gg 1.$$

(57)

Thus, the micromachined DTG increases the gyroscope gain to the measuring angular rate in comparison with prototypes of the MMG based on CS, in particular for the ICS by five orders of magnitude. Due to the mechanical decoupling between inner and outer rotors of the micromachined DTG that occurs in the tuned gyroscope, the sensitivity of the linear angular displacement of the gyroscope outer rotor to measuring angular rate is significantly increased. This fact leads to an improvement the signal-to-noise ratio of capacitive angular sensors signal processing. As a result, the accuracy of these type of gyroscopes is expected to be higher.

VII. CONCLUSION

In this paper, the mathematical model of a micromachined, dynamically tuned gyroscope, based on a contactless suspension, is developed as an alternative strategy for improving the accuracy of micromachined gyroscope. The dynamical analysis of it for the case in which the CS provides "hard" electrical springs is conducted. The analysis shows that such a gyroscope can measure the rotation of a gyroscope case in principle and with gyroscope gain which is much larger than one of the existing prototypes of MMG based on CS. This fact leads to an improvement in signal-to-noise ratio of the pick-off sensors signal processing. Hence, the expected accuracy of such type of gyroscopes is expected to be higher.

REFERENCES

Christopher Shearwood received his first class honours degree in Physics and a PhD in Solid State Physics from the Leeds University in 1984 and 1988, respectively. In 1995, he was appointed Senior Fabricator in the MEMS Unit of the Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield. In 1998, he then moved to Singapore to work in the Micro- Machines Laboratory, Nanyang Technological University. His research interests include MEMS and magnetic thin film technology. He is presently an Associate Professor at NTU, Singapore.

Alexandr I. Chernomorsky received the Diploma of Engineer and Ph.D. degree from Moscow Aviation Institute in 1964 and 1968 respectively. Currently, he is full professor and Deputy Director of Department Automatic complexes of orientation and navigation systems in Moscow Aviation Institute (State University of Aerospace Technologies). Also he is member of international academy Navigation and Motion Control. His active research interests include gravity inertial devices and orientation and navigation systems of movable objects. He is the author of over 200 scientific works and 60 patents.

