<table>
<thead>
<tr>
<th>Title</th>
<th>Cloning, expression and characterization of the human transcription elongation factor, TFIIIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yoo, Ook Joon; Yoon, Ho Sup; Baek, Kwanghee; Jeon, Choon Ju; Miyamoto, Kenichi; Ueno, Akemichi; Agarwal, Kan</td>
</tr>
<tr>
<td>Date</td>
<td>1991</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/7658</td>
</tr>
<tr>
<td>Rights</td>
<td>© 1991 Oxford University Press. This is the author created version of a work that has been peer reviewed and accepted for publication by Nucleic Acids Research, Oxford University Press. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at:http://dx.doi.org/10.1093/nar/19.5.1073</td>
</tr>
</tbody>
</table>
Cloning, expression and characterization of the human transcription elongation factor, TFIIS

OokJoon Yoo, HoSup Yoon, KwangHee Baek, ChoonJu Jeon, Kenichi Miyamoto, Akemichi Ueno and Kan Agarwal*
Departments of Biochemistry, Molecular Biology and Chemistry, The University of Chicago, Chicago, IL 60637, USA
* To whom correspondence should be addressed

ABSTRACT

The cDNA for the human elongation factor, TFIIS, has been cloned and expressed in E. coli with the T7 expression system. This 280-amino acid TFIIS protein is shorter by 21 residues than that of the mouse. The missing 21 residues are located in the amino-terminal region, which is not thought to be required for transcriptional stimulation. Apart from this gap, human and mouse proteins reveal 96% overall identity and 98.5% sequence similarity if conservative substitutions are taken into account. The bacterially expressed human protein and the purified calf thymus proteins are indistinguishable in their ability to stimulate transcript elongation by purified RNA polymerase II. Estimation of the native molecular size of the human protein in solution indicates that it exists as a dimer.

INTRODUCTION

The underlying mechanisms responsible for eukaryotic transcriptional regulation are being deciphered with the isolation and functional characterization of the factors that govern defined steps in RNA synthesis (1, 2). Numerous factors that promote initiation and subsequent activation of RNA polymerase II transcription have been isolated from a variety of sources, and biochemical studies of the relationships between their structure and functions are beginning to reveal the mechanism of their function (2). In contrast, little is known about regulation at transcript elongation and eventual termination. A transcription factor, TFIIS (previously known as S-II), was first discovered as a factor stimulating transcription by RNA polymerase II 2- to 3-fold (3) and has now been shown to act during transcript elongation (4). In addition, this factor exerts influence on the intrinsic ability of
polymerase to recognize some pause sites or premature termination sites, by allowing the polymerase to read through at these sites (5). These biochemical functions of TFIIS emerged from in vitro studies that employed well-defined purified components, but the true role of TFIIS in vivo remains unknown.

The wide distribution of this factor in yeast (6), Drosophila (7), mouse (8), calf thymus (9), and human (4), indicates that this factor might play an essential role in the transcript elongation process. The functional specificity of this factor for RNA polymerase II, as opposed to polymerase I and II and E. coli polymerase, further suggests that it plays an important but well-defined role in transcription elongation (4). Its ability to function effectively with interspecies RNA polymerase II (and vice versa) suggests strong conservation in structural and functional domains (4, 5).

Biochemical analysis of mouse, calf thymus, and yeast TFIIS proteins revealed that these proteins were capable of binding to purified RNA polymerase II, independent of DNA and NTP's, and that the complexes could be readily isolated by glycerol gradient centrifugation for analysis (4). This binding (dissociation constant 5×10^{-8}M), in the case of yeast protein (p. 37), was determined to be salt-sensitive indicating involvement of ionic interactions (6). Interestingly, yeast protein binds specifically to the RNA polymerase II form that contains phosphorylated CTD (6). Binding of TFIIS to an additional site on the largest subunit has also been suggested by an experiment that employed a fusion protein containing a fragment lacking CTD from the largest subunit of RNA polymerase II (10). While the functional significance of TFIIS binding to the internal region of polymerase is unclear, the interaction between CTD and TFIIS is significant in light of the suggestion that CTD may play an important role in the transcript elongation process (11, 12).

The small amount of TFIIS in eukaryotic cells and the difficulty in generating mutant forms of the protein in vivo were in part, the reasons why the underlying biochemical mechanisms of its function remained poorly understood. However, the recent molecular cloning of mouse TFIIS now allows ready access to wild-type and mutant forms of proteins for biochemical analysis (13).

In this paper we describe the isolation and characterization of human TFIIS cDNA and the purification and biochemical characterization of the bacterially expressed protein. In contrast to mouse protein, the human protein lacks a stretch of 21 amino acids from the amino terminal region. The amino acid sequences of human and mouse proteins reveal a remarkable overall identity of 96%, and all of the amino acid substitutions are located in the 100-amino acid amino
terminal region. The E. coli-expressed TFIIS protein is as active as calf thymus protein in stimulation of the transcription of purified RNA polymerase II. E. coli and calf thymus proteins share similar antigenic determinants as demonstrated by the finding that antibodies against E. coli TFIIS are able effectively to react with calf thymus protein. In addition, we show that TFIIS exists as a dimer in solution.

MATERIALS AND METHODS

Enzymes. Calf thymus RNA polymerase II was purified to > 90% homogeneity with the procedures reported previously (14, 15). One unit of RNA polymerase II was defined as the amount of the enzyme required to incorporate 1 μmol of CMP or UMP per minute in a 10 min reaction at 37°C. Calf thymus TFIIS was purified to > 85% homogeneity with the modified procedure described previously (9). One unit of TFIIS was defined as the amount of enzyme required to stimulate 1 unit of RNA polymerase II to 2 units (4).

Preparation of C-tailed DNA. The pUST1 clone that contained the AvaII-BstNI fragment of the gastrin gene 3' flanking region cloned into the pUC plasmid (16) was linearized by digestion with Sma I (this site is located 5' to the Ava II site). The resulting 3' ends were extended with deoxynucleotidyl terminal transferase and [3H] dCTP by the procedure described previously (17). An average of 60-100 dC-residues were added per 3' end. The tailed plasmid was then digested with Hind III (this site is located 3' to the BstNI region), and the resulting uniquely tailed fragment was purified with gel electrophoresis.

Assay of TFIIS activity. Two transcription assays were used. In one of these calf thymus DNA was the template, and in the other, dC-tailed DNA was the template.

Assay employing calf thymus DNA. The transcription reaction mixture contained 62.5 mM Tris HC1, pH 7.9, 1.69 mM MnCl₂, 600 mM each of ATP, GTP, CTP, and 100 μM UTP, along with 2 μCi of [5, 6-3H] UTP (40 Ci/mmol), 8.25% glycerol, 25 μM EDTA, 125 mM DTT, 50 mM (NH₄)₂SO₄, and 330 μg/ml of calf thymus DNA in 30 μl. Reactions were carried out at 37°C for 10 min in the presence of 0.1 — 0.5 units of purified RNA polymerase II alone or in combination with an appropriate amount of TFIIS. Workup of the reaction followed the procedure described previously (9).
Assay employing dC-tailed DNA. The dC-tailed DNA (2 nM) in 25 mM K-HEPES, pH 7.9, 0.5 mM EDTA, 0.5 mM DTT, 6.25 mM MgCl₂, 5 mM spermidine, 150 mM K-glutamate, 10% glycerol was incubated with 1 unit RNA polymerase II alone or in combination with 7 to 10 units TFIIS at 30°C for 30 min. The reaction was initiated with the addition of 500 μM each of ATP, GTP, UTP, and 100 μM CTP plus 10 μCi (α-³²P)CTP (3,000 Ci/mmol) in a final volume of 12.5 μl and was incubated further at 37°C for 10 min. The reaction was stopped with 1 μl of 0.5M EDTA in a one-tenth volume of 3M Na-acetate containing 2 μg of tRNA, followed by extraction with phenol/CHCl₃/isoamyl alcohol. The nucleic acids were precipitated with ethanol and analyzed with 8% polyacrylamide 8M urea gels.

Cloning of human TFIIS cDNA. A human kidney cDNA library in λgt 10, generously supplied by Dr. Graeme Bell, was screened for the TFIIS cDNA clone with the following oligonucleotide probes: CTGCACATTTTGRCCATCTTTTGGCAATGCGAACCACCTCGTCTCCCAT (this sequence corresponds to the 5' region of the mouse TFIIS mRNA (13); residues 82—133), and CCACCGATTTCACATTACATACAACAAAATGGTTGCATTGGTCATACGAC (this probe represents the 3' region of the mouse mRNA; residues 921-976). The library was first screened with a mixture of these probes; duplicate screening of the positive clones with individual probes followed. Screening of the phage library was performed according to the procedure described previously (18). The nucleotide sequences of the cDNA inserts of the positive clones were determined by subcloning the insert into M13 phage DNA followed by dideoxysequencing (19). Both strands were sequenced.

Overproduction of the TFIIS protein in E. coli. The cDNA encoding TFIIS (nucleotides 125 —2,357) was excised from the plasmid, pHIIS44, by double digestion with NcoI and KpnI, and the resulting fragment was isolated and then subcloned into the NcoI and KpnI sites of the plasmid, pT/CEBP (20) by a fragment replacement strategy. In this construction (pEIIS), the TFIIS coding sequence (residues 125 —2,357) was directly under the control of the T7 RNA polymerase promoter, and translation was initiated at the TFIIS Met. The clone, pT/CEBP was kindly donated by Dr. B. Landschulz of the Carnegie Institute of Washington (20). Overproduction of TFIIS from pEIIS was achieved by adding 0.5 mm IPTG to BL21 (DE3)/pEIIS at an optical density of 1.0 at 600 nm followed by harvesting of the cells 2 hours later.
Purification of TFII S. The procedures described for the isolation of TFII S from mouse ascites cells (8) and calf thymus tissue (9) for isolation of TFII S could not be adopted for the BL21(DE3) strain. A large proportion of native TFII S protein was degraded to a truncated, inactive protein even though several protease inhibitors were present at all times during purification. The procedure to be briefly described resulted in the isolation of a highly enriched and fully active TFII S protein. Thirty grams of BL21(DE3) cells were suspended in 200 ml of buffer A (500 mM Tris HCl, pH 7.9, 5% glycerol, 0.5 mM DTT, 1 mM PMSF, 1 mM aprotinin, 5 mg/ml leupeptin, 2 mg per ml pepstatin) containing 233 mM NaCl, and 2 mM EDTA and treated with 50 mg lysozyme for 20 min followed by addition of 4% DOC to a final concentration of 0.5%, and then allowed to stand for 20 min at 4°C. To the clear supernatant, generated after centrifugation for 45 min at 9,000 rpm, a 5% streptomycin sulfate solution was added to a final concentration of 1.2%; the precipitate was removed by repeating the centrifugation. To the supernatant was added 89.2 gm of powdered ammonium sulfate to 55% saturation. After 1.0 hr of gentle stirring, the precipitate was collected by centrifugation (9,000 rpm for 30 min). The precipitate was suspended in 50 ml of buffer B (buffer A containing 50 mM NaCl and 0.2 mM EDTA), and the solution was dialyzed against buffer B with three changes of buffer. The dialysate was loaded on to a preequilibrated DEAE-Sepharose Column (4.4 cm × 13.2 cm) and the resin washed extensively with buffer B. Most of the TFII S protein was found in the flow-through solution as judged with SDS-PAGE and the RNA polymerase II stimulatory activity assay. The fractions containing TFII S protein were combined and treated with solid ammonium sulfate to 55% saturation. The precipitate was collected by centrifugation and then suspended in buffer B containing 100 mM instead of 50 mM NaCl and loaded onto a phosphocellulose (P-11) Column (2 × 15 cm). After the column was washed with buffer B containing 100 mM NaCl, it was developed with 200 ml of a linear gradient of 100 mM-500 mM NaCl in the same buffer. The TFII S protein was eluted at approximately 300 mM NaCl and was judged by SDS-PAGE to be contaminated with a smaller protein. Further purification was accomplished with chromatography on a Sephacryl S-200 column (2.2 cm × 96 cm) in buffer B containing 500 mM NaCl. This purification step resulted in a > 85% homogeneous TFII S protein as judged with SDS-PAGE. The purified protein samples were stored in buffer B containing 300 mM NaCl at —20°C.

Preparation of 35S-labeled TFII S protein. Cells were grown in M9 minimal medium to an optical density of 0.5 at 600 nm, and then induced by the addition of IPTG to a concentration of 0.3 mM, and allowed to grow for an additional 30 min. Rifampicin was then added to a concentration of 200
μg/ml, and cell growth was continued for another 90 min. 35S Met (20 μCi/ml of culture) was added, and the cells were grown for an additional 5 min. Cells were centrifuged for 10 min at 5,000, rpm and the cell pellet was washed by resuspending it in 25 mM HEPES, pH 7.6, 1 mM EDTA. The cells were repelleted with centrifugation and were resuspended in one tenth of the culture volume and allowed to freeze in liquid nitrogen and stored at -80°C. The labeled TFIIS was isolated with the procedure described above. Purity of the labeled protein was assessed with 12% SDS-PAGE, and the protein bands were made visible with 0.1% coomassie blue stain and autoradiography.

Physical properties of TFIIS protein. The molecular weight of the native form of TFIIS was estimated with two methods: (1) chromatography on a Sephacryl S-300 Column along with proteins of known molecular weight, and (2) chemical crosslinking of TFIIS in solution. Chromatography of 35S Met-labeled TFIIS on a Sephacryl S-300 Column was performed as recommended by the manufacturer. Fractions containing radioactivity were analyzed with SDS-PAGE.

Chemical crosslinking of 35S Met-labeled TFIIS was accomplished by treatment of a 160 μg/ml solution of TFIIS protein in 60 mM Na$_3$PO$_4$, pH 7.0, 200 mM NaCl, 10% glycerol, with 0.5 mM bismaleimidohexane (BMH, Pierce) for 40 min at room temperature. The reaction was stopped with the addition of 5 mM 2-mercaptoethanol and 5 mM of ethanolamine as described previously (21). The reaction mixture was analyzed with 12% SDS-PAGE followed by autoradiography.

Preparation of antibodies against E. coli expressed human TFIIS. One mg of purified TFIIS in Freund complete adjuvant was injected into rabbits which followed (after 3 weeks) booster injection of 100 μg of the protein in incomplete Freund adjuvant. The animals were bled one week after the booster injection, and antisera were prepared and examined with immunodiffusion method (22). IgG was purified from the sera by (NH$_4$)$_2$SO$_4$ precipitation followed by DEAE-cellulose chromatography (23). The isolated IgG was specific for the TFIIS protein was determined by its ability to block the stimulatory activity of TFIIS in an RNA polymerase II transcription assay. Western blot analysis also showed binding of IgG to purified TFIIS protein.
RESULTS

Isolation and characterization of human TFIIS clones

A human kidney cDNA library was screened with two oligonucleotide probes whose sequences were derived from the mouse TFIIS mRNA and corresponded to the amino- and carboxyl-terminal regions of the protein (9). Five clones that hybridized to each of these probes were isolated; they contained inserts of approximately 2.5 Kbp. The restriction-endonuclease-mapping pattern indicated the existence of two classes of clones; one class contained an additional pVuII site and was designated pHIIS75, while the other was lacking this site and was designated as pHIIS44. Analysis with detailed restriction mapping indicated that the pVuII site was in the Ncol-Xhol region (nucleotides 124 — 427; Fig. 1); this region was estimated to be 100 — 200 nucleotides longer than the corresponding region in the pHIIS44 clone (data not shown).

Nucleotide sequence analysis revealed virtual identity between the clones (the sequence of the pHIIS44 clone is presented in Fig. 1), except that the pHIIS44 clone contained a deletion of 112 nucleotides. This insert appeared to be an unspliced intron sequence for the following reasons: 1) analysis of the coding ability of the pHIIS44 clone indicated the potential generation of a 280-amino acid polypeptide similar to the mouse 301 amino acid protein, whereas pHIIS75 coded for only an 89 amino acid peptide, and 2) examination of the 112 nucleotide sequence revealed the presence of the dinucleotides, GC and AG, and a pyrimidine-rich region upstream of the AG dinucleotide; these are features common to functional introns (Fig. 2). It was of interest, however, that the mouse mRNA contained 63 of the 112 human nucleotides (these 63 exhibited 91% identity) and encoded for 21 amino acids that made the mouse protein larger than the human protein. This 63 nucleotide region, although it contained features of a functional intron, apparently did not undergo splicing, perhaps because it did not meet the critical-size requirement. In human mRNA, the presence of a stop codon (TAA) may exert an evolutionary pressure to generate an mRNA that encodes for a functional protein, as a consequence of which a spliceable intron is created. Whatever the mechanism, one is curious how this human intron region evolved among different species.

Comparison of human and mouse TFIIS DNA and protein sequences

Human and mouse TFIIS mRNAs shared a remarkable 92 % identity in the nucleotide
sequences of their coding region, indicating a high level of conservation during the evolution of this gene. The sequence was less conserved in the 5'(46%) and 3'(55%) untranslated regions, however. Identity between human and mouse amino acid sequences was equally striking at 96% with a gap of 21 amino acids and 98.5% if conservative amino acid substitutions are considered (Fig. 3). Almost all of the substitutions were located in the 100-residue N-terminal, a phosphorylated region (24). The 180-residue C-terminal region was 99% identical, with a conservative substitution of isoleucine with valine (Fig. 3).

Sequence similarity of TFIIS to other proteins

A search of the NBRF data bank with the human sequence identified its similarity to the yeast PPR2 protein. These two proteins (the 128 amino acid PPR2 and the 280 amino acid human TFIIS) shared an overall identity of 40%, and in the C-terminal 44 amino acids they shared an identity of 70%. Similar homology was recently noted between mouse TFIIS and PPR2 protein (25). While this manuscript was in preparation, Ahn *et al.* reported a sequence of the vaccinia virus RNA polymerase subunit that was somewhat similar to mouse TFIIS (26). Approximately 23% of the residues were identical over a 180 amino acid overlap between the mouse TFIIS and vaccinia rpo30. While it remains to be shown whether rpo30 is a true functional homolog of TFIIS, it is striking that there exists significant identity near the TFIIS C-terminal region that is thought to be involved in zinc binding. A high degree of sequence similarity (72%) has recently been reported for Drosophila and mouse TFIIS proteins as well (29).

Expression and purification of human TFIIS

The human TFIIS cDNA was expressed in *E. coli* with the T7 RNA polymerase expression system developed by Studier and coworkers (27). Cloning of cDNA into the expression plasmid is described in the Methods section. In the expression plasmid, pEIIS, transcription of the cDNA was under the direct control of the T7 promoter and the translation of the mRNA was initiated at the TFIIS amino terminal methionine. As shown in Figure 4, a protein of 35.8 Kd was expressed in the cells harboring the pEIIS plasmid on induction with IPTG (lane 2), while this protein was not expressed in the control cells containing the expression plasmid that lacked the TFIIS cDNA insert (lane 1). The amount of TFIIS expressed was estimated at 3% to 5% of the total *E. coli* proteins.

The moderately high expression of the TFIIS protein allowed its isolation in highly enriched
form. However the native protein was susceptible to truncation in the crude extract during the early purification steps. A purification scheme, although laborious, allowed the isolation of a protein that contained roughly 85% native form and 15% truncated form (Fig. 4, lane 3). Several-milligram quantities of TFIIS were isolated with this procedure for structural and biochemical characterization.

Characterization of E. coli expressed TFIIS

The purified protein was characterized physically, immunologically, and by its ability to stimulate RNA polymerase II transcription. The denatured human protein (35.8 Kd) is smaller (Fig. 5A, lane 2) than the purified calf thymus protein (38 Kd; lanes 1 and 3). This suggests that calf thymus and mouse proteins (38 Kd) are of similar size and the human protein is smaller because of the gap of 21 amino acids. The structural relation between human and calf thymus proteins was examined by determining whether anti-human-protein-specific antibodies interacted with calf thymus protein. As shown in Figure 5B, human antibodies effectively interacted with calf thymus protein, indicating that both proteins share immunological epitopes. Interestingly, calf thymus protein contained a low-molecular-weight protein similar to human protein (Fig. 5B; compare lanes 1 and 3) further indicating structural similarity between these proteins. This observation also suggested the existence of a protease in both E. coli and mammalian cells that can digest TFIIS.

The ability of E. coli expressed human protein to stimulate RNA polymerase II transcription of dC-tailed DNA was examined and compared with that of purified calf thymus protein. As shown in Figure 6, both proteins stimulated transcription to similar levels, as evidenced by the nearly equal amounts of full-length RNA produced (compare lanes 2 and 3 with lane 1). The level of stimulation in each case was approximately 5- to 6-fold. In addition to stimulation of transcript elongation, human protein allowed RNA polymerase II to read through the gastrin gene termination site to the same extent as calf thymus protein (compare lanes 2 and 3). This suggested that E. coli expressed human protein was functionally identical to purified calf thymus protein.

Estimation of the native molecular size of human TFIIS

Analysis of the elution behavior of human protein with chromatography on a Sephacryl S-300 Column indicated that the human protein might exist as a dimer of 72Kd, (Figure 7A). However,
considering the pitfalls of the gel-filtration procedure in estimating native molecular size, we employed a chemical crosslinking procedure that allows estimation of native molecular size, independent of shape. Crosslinking by glutaraldehyde was uninformative because the protein products rapidly precipitated out of solution. This may have been due to formation of crosslinked networks with lysine residues. The problem was circumvented, however, by employing a mild thiol-specific bismaleimidehexane (BMH) reagent (21). Under controlled reaction conditions with a protein concentration of 160 µg/ml, about 5% -10% of the protein crosslinked to a dimer form, as shown in Figure 7, lanes 1 and 2. This suggested that human TFIIS exists as a dimer in solution. On the basis of virtual identity among human, mouse, and calf thymus proteins, it is reasonable to suggest that mouse and calf thymus proteins may also exist as dimers in solution. It is not known, however, whether TFIIS acts as a dimer. Studies to probe this aspect are currently under way.

DISCUSSION

The cDNA clone described in this report was identified by screening a human kidney cDNA library with oligonucleotide probes derived from the mouse mRNA. The goal was to generate a cDNA clone for structural and functional studies. The mouse clone would have served the desired purpose, but since it was not in hand, we embarked upon isolation and characterization of the human TFIIS clone. Interestingly, two classes of clones were identified; the mature form and presumed pre-mRNA form. The protein sequence derived from the mature form of mRNA encoded a 280 amino acid polypeptide that is shorter by 21 amino acid than the mouse protein (13). The additional 21 amino acids of the mouse protein are encoded by the sequence that is part of the intron and that is highly homologous to the human sequence. One wonders how a nonspliceable potential mouse intron of 63 nucleotides evolved into a 112 nucleotide spliceable intron. Some useful information relating to the evolution of this gene may emerge from comparison of the human, mouse, Drosophila, and yeast nucleotide sequences.

The amino acid sequences of human and mouse are remarkably conserved, indicating their essential role in transcript elongation by RNA polymerase II. It is likely that TFIIS proteins from other eukaryotic species also exhibit high conservation of their amino acid sequences because of the essential role of these sequences in RNA polymerase II transcription and the fact that proteins identified from other eukaryotic species are of similar molecular size. The absence of 21 amino acids in the amino terminal region, the clustering of amino acid substitutions in this region, and the
functional similarity between human and calf thymus proteins indicate that the amino terminal region may not be required for transcript elongation by RNA polymerase II. Indeed, deletion of the N-terminal 100 amino acid produced a mutant form of TFIIS that is fully functional (28). This is in agreement with the observation that the mouse 21 Kd C-terminal fragment is capable of stimulating RNA polymerase II transcription in a manner similar to that of wild-type protein (24).

The functional significance of the 180 residue C-terminal is indicated by the requirement of this entire region for both binding to RNA polymerase II and stimulation of transcript elongation (28). In this segment, the polymerase binding ability resides in the residues 100-230 (28). While this region is highly conserved in human and mouse proteins, the level of conservation may vary among species depending on evolutionary relationships exhibited by the cognate RNA polymerases. The low homology between vaccinia virus rpo30 protein and the human/mouse protein proposed as an elongation factor for polymerase, tends to support this idea (26). However, there is no biochemical evidence that the rpo30 protein serves as an elongation factor for vaccinia virus RNA polymerase, and hence caution should be exercised in accepting this proposal (26).

Stimulation of transcript elongation is exerted by the C-terminal Cys2/Cys2-motif zinc finger (28). This region shows absolute identity between the amino acid sequences of human and mouse proteins (residues 230-280), and in addition shows highly significant homology with the vaccinia virus rpo30 and yeast PPR2 proteins (25, 26). This high level of homology underscores the functional significance of zinc finger region in transcriptional stimulation. Assuming that the vaccinia virus rpo30 and yeast PPR2 proteins exert their influence at the level of transcript elongation, it should be possible to exploit this homology data in the precise definition of structure-function relationships. Studies along these lines are now in progress.

Like many transcription factors, the human TFIIS protein exists as a dimer in solution. On the basis of the nucleic acid-binding property of the zinc finger region, we have recently proposed a model for transcription stimulation with involvement of monomer form of TFIIS (28). It is conceivable that the region used in dimer formation is also used in the binding to polymerase. Studies along these lines are also in progress.
ACKNOWLEDGEMENTS

The authors thank Marsha Rosner and Herbert Friedmann for critical reading of the manuscript and Hoen Kim for preparation of the figures. They also thank Diane Kahng for preparation of the manuscript. This research was supported by the National Institute of Health grant DK 21901.
REFERENCES

List of Figures

Fig. 1 Primary structure of human TFIIS mRNA. The nucleotide sequence of the mRNA deduced from the 2.5-Kbp cDNA insert in clone pHIS44 is shown. Nucleotide 1 represents the first base of cDNA. The sites of translation initiation and termination and of polyadenylation are underlined.

Fig. 2 Comparison of the human and mouse sequences in the region that predicts the presence of an intron in the human TFIIS cDNA is shown. Comparison of human and mouse sequences in the region of differences is shown. The missing nucleotides are shown with dashes. The numbering of the nucleotides corresponds to that of the respective clones. The proposed intron/extron boundaries are indicated by an inverted triangle. The dinucleotides generally found at these boundaries are underlined. The pyrimidine-rich sequence frequently found upstream of AG dinucleotide is underlined. The stop codon is boxed.

Fig. 3 Amino acid alignment of human and mouse TFIIS proteins. The vertical lines indicate identity, and colons indicate conservative amino acid replacements. The gap is shown with dots.

Fig. 4 Expression of TFIIS in E. coli and its purification. The conditions of cell growth and protein purification are described in the text. A 10% polyacrylamide gel was stained with coomassie blue after electrophoresis in the presence of SDS. The uninduced lane contains E. coli BL21(DE3)/pT5 cells (lacks cDNA insert). The induced lane contains BL21(DE3)/pEIIS cells induced with IPTG. The purified TFIIS protein from the induced-cell extract is shown in the purified TFIIS lane.

Fig. 5 Physical and immunological characterization of TFIIS. (A) Purified E. coli expressed TFIIS protein and purified calf thymus (C.T.) protein were analyzed with 10% SDS-PAGE followed by staining with coomassie blue. Results of the analysis of the mixture of human and calf thymus proteins is also shown. (B) Results of western-blot analysis of human and calf thymus proteins using antihuman antibodies is shown. Conditions for the blot analysis are described in the text.

Fig. 6 Results of analysis of the effect of human and calf thymus TFIIS proteins on RNA polymerase II transcription. The dC-tailed DNA template used is illustrated in the upper part of the figure. Its preparation is described in the text. Sizes of the full-length and terminated transcripts are indicated. The lower part of the figure shows results of the analysis of transcription of dC-tailed DNA by RNA polymerase II (pol II) alone, pol II + calf thymus (C.T.) TFIIS, and pol II + human TFIIS. Details of the transcription reaction are given in the text. Similar amounts of calf thymus and human proteins were used in the assay. Positions of the full-length and terminated transcripts are indicated by arrows.
Fig. 7 Results of the analysis of molecular size of the native TFIIS protein. (A) Results of the analysis of the protein on Sephacryl S-300 Column is shown. Sizes of the protein markers analyzed on the same column are indicated. Estimated molecular size of TFIIS protein is also indicated. (B) Results of chemical crosslinking of [35S] Met-labeled TFIIS protein with BMH (see text) is shown. The reaction products were analyzed by 10% SDS-PAGE followed by autoradiography. Positions of the monomer and dimer are shown by arrows.
Fig. 1
Fig. 2
<table>
<thead>
<tr>
<th>Human</th>
<th>MEDEVVFRAKKMDKMKVQKKNA..........................STRIGMSV 29</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>MEDEVVRIAKKMKMVQKNAAGALDLLKELKNIPMTLELLLQSTRIGMSV 50</td>
</tr>
<tr>
<td>30</td>
<td>NAIRKQSTDEEVTSLLALKSLIKSWKLLDGPSTEKLDEKKEPAITSQNS 79</td>
</tr>
<tr>
<td>51</td>
<td>NALRKQSTDEEVTSLLALKSLIKSWKLLDGPSTDKEEKKEPAISSQNS 100</td>
</tr>
<tr>
<td>80</td>
<td>PEAREEESTSSGNVSNRKDDETNDARTTYVSSSFPRAPSTDSVRLKCREMLAA 129</td>
</tr>
<tr>
<td>101</td>
<td>PEAREESSSSNVSSRNKDDETNDARTTYVSSSFPRAPSTDSVRLKCREMLAA 150</td>
</tr>
<tr>
<td>130</td>
<td>ALRTGDDYAIGADEELGSIQIEEAYQEIRNTDMYKNVRANSNILKD 179</td>
</tr>
<tr>
<td>151</td>
<td>ALRTGDDYVAIGADEELGSIQIEEAYQEIRNTDMYKNVRANSNILKD 200</td>
</tr>
<tr>
<td>180</td>
<td>AKNPNLRLKVLCGNIPDLFARMTAEMASDELKEMKRLTNLEAIKREHM 229</td>
</tr>
<tr>
<td>201</td>
<td>AKNPNLRLKVLCGNIPDLFARMTAEMASDELKEMKRLTNLEAIKREHM 250</td>
</tr>
<tr>
<td>230</td>
<td>AKTGGTQTDLFTCGKCKKKNTYTVQOPTSADEPMTTFVNCNCGRNRWKF 279</td>
</tr>
<tr>
<td>251</td>
<td>AKTGGTQTDLFTCGKCKKKNTYTVQOPTSADEPMTTFVNCNCGRNRWKF 300</td>
</tr>
<tr>
<td>280</td>
<td>C 280</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>C 301</td>
</tr>
</tbody>
</table>

Fig. 3
Fig. 4
Fig. 5
Fig. 7