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Abstract This paper reports a design that reliably adds reagentsiinfgets by exploiting
the physics of fluid flow at a T-junction in the microchanneh Axpanded section right
after the T-junction enhances merging of a stream with aldtopliminates the drawbacks
such as extra droplet formation and long mixing time. Theaexjed section reduces the
pressure build-up at the T-junction and minimizes the tangéo form extra droplets; plays
the role in creating low Laplace pressure jump across tlefatde of the droplet forming
from the T-junction which reduces the probability of forrgiextra droplet in the merging
process; provides space for droplet coalescence if thear extra droplet due to droplet

break-up before merging. In this design, after mergingrélaetants are in axial arrangement
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inside the droplets which leads to faster mixing. Relialldiion of reagent to the droplets
happens for the combination of flow rates in a broad range &6ml/hr to 250 ul/hr, for

both DI water Qp;) and fluorescent@s o) streams.

Keywords Droplet Microfludics- Droplet Merging- Reagent addition Droplet Coales-

cence

1 Introduction

Microfluidic systems developed with multiphase flows areduse miniaturizing chemical
and biological laboratory techniqued (I, 2]. Microscaleltiphase flows such as aqueous
droplets in oil are useful as sample transporters, mixirtgaaoers, dispersion eliminators
and simply good discrete microreactdrk [814, 5]. AqQueowpldts in microchannel are gen-
erated in a immiscible carrier fluid using T-junction or floectising channel[6,11]. Size of
the droplets can be varied by changing the flow rates of imbieséuids [12[13]. Reagent
addition to the droplets is necessary for chemical and iokd analysis. Adding a precise
amount of reagents to a droplet poses difficulties and varsmhemes for reagent addition
have been investigated by researchers.

Dosing of liquid reagents into droplets using a single Tejion in a microchannel was
first demonstrated by Henkel et. el [8]. However, those destrations were limited to a
few flow rates of the reagents. Shestopalov et[al. [10] tegda method to adding reagents
to droplets in which they injected reagents directly inte throplets. Method of injecting
the reagent with the sample to form droplets at the T-junctias difficulties in precisely
controlling the amount of reagents due asymmetric sheessstit the inlet boundary 114, 4].
Mixing of reagents can happen in this method, before drdplebation, which interferes

in the case of following instantaneous reactions and thighatkis not suitable for adding
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different reagents and carry out subsequent reactiondddeif coalescing the droplets by
surface energy pattern16] or geometry mediation [17] lesntused to force the immisci-
ble fluid in between the individual droplets and bring intotaxt to coalesce them. Bremond
et al. [28] proposed that decompressing emulsion dropletdhanism for the coalescence of
droplets in microchannels. Use of electiicl[26] and elestatic forces[[18] to coalesce the
droplets is not suitable for use with biological materi&lai et al. [29] reported merging two
droplets with the use of pillars in microchannels. Mergiaggents into the droplets moving
in the mainchannel at a T-junction (Fig. 1(a)) experienagbf@ms like synchronization of
droplet arrival, contamination of the injecting stream aglihble merging only in a narrow
range of flow rated]8]B.15]. Replacing single T-junctiothamulti-junction eliminates the
need for synchronisatio_[1L9], but has higher fabricatiost@ue to the insertion of hy-
drophilic side channels separately. Injecting reagenésratively from two side branches
of double T-junctions increases the synchronization feegy in a wide range of flow rates
but merging is not guaranteed to 100% at all flow rate cormiti@1].

To overcome the above mentioned problems, we propose andésigexploits the basic
fluid flow physics in the microchannel to increase the religbbdf adding reagents into
droplets. In this article, it will be demonstrated that apamsion in the microchannel right
after the T-junction enhances the reliability in addinggesats to the preformed droplets at

a T-junction.

2 Experimental details

2.1 Microchannel Design

The rational behind the provision of an expanded sectiantiehe answer to the following

guestion: Why do extra droplets form? If the merging has fgpkea on a continuous basis
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at the T-junction, droplet formation from the side chanres to be synchronizedl[3] with
the arrival of the droplet which has already been formed andimg in the mainchannel.
Otherwise an extra droplet forms, as seen in Fig. 1(a), térseainreliable merging, a state
of merging where the reagent itself forms a droplet. Gakstetcal. [11] proposed that the
breakup of the two immiscible liquids at the T-junction irodtet microfluidics is dominated
by the pressure built up across the droplet as it forms at kiwes of the capillary number
(< 1072). Similarly, merging reagents into droplets with conventil T-junction, which has
similar dynamics as that of the droplet formation at a T-jiorg pressure builds up across
the emerging reagent droplet due to the high resistance tibativ of continuous fluid in the
thin films that separate the droplet from the walls of the ogbannel, when the droplet fills
almost the entire cross-section of the channel. This predsuildup squeezes the droplet
to break from the T-junction when the already formed dropfgiroaches it, as seen in Fig.
9(c).

Therefore, if the pressure build-up that squeezes the elrépldetach it from the T-
junction can be reduced, we can avoid the extra droplet enobWWe provide an expanded
section, just after the T-junction, on both sides of the cledinthe expansion in the side
which is opposite to the droplet forming side channel presithe extra space for the carrier
fluid to move forward, as seen in Fig. 1(b), so that the presbuild-up can be reduced,;
the expansion in the side from which the droplet forming mtewhe space for the droplet
to grow, which allows the space for the extra volume creatgihg the waiting time for
the droplet arrival in the main channel. In doing that, therene more additional feature
added, apart from the reduced pressure drop: when the ttopkks before merging, due to
longer waiting time and droplets growing big to block theraxpace, the expanded section
can function like a time delay component. It can restrictrti@ement of the droplets and

facilitate the process of droplet coalescence. Fig. 1 slibevschematic diagram of the mi-
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crochannel designs (a) with conventional T-junction andyjth an expanded section. There
are three inlets to pump the fluids into the microchannel araautlet to collect the spent
fluids. The mineral oil inlet and the DI water with fluorescericlet meet at the Y-junction
and the DI water inlet from the side meet the main channeljab@tion. The expanded sec-
tion is located at the distance of Bt after the T-junction, but could be located as closely
as possible, the constraint being the resolution of thegpimatsk. The microchannel has the

height of 100um. The other dimensions of the microchannel are shown inJFig.

2.2 Fabrication

The channel designs were printed into a photolithograhiskvend the negative SU-8
photo resist (Microchem Corp.) was used to fabricate thetenasold using standard pro-
cedures specified from Microchem. Then microfluidic chipsesabricated using poly-
dimethysiloxane (PDMS) polymer (Dow corning Sylgard 184c8he Elastomer) through
the standard soft lithography process for PDMS microchiafateication [22]. The cured
PDMS microchannels were bonded to another piece of flat PLAy& lafter treating them
with oxygen plasma. And they are allowed to recover theirbgHobicity, because of the

need of the walls to be hydrophobic which facilitates therfation of water droplets in oil.

2.3 Experimental setup

The following fluids were used for the experiments: 1) Mihesé as the carrier fluid
(M5904, Sigma-Aldrich) with 2% w/w Span 80 surfactant (Sag#ldrich S6760), 2) DI
water with fluorescent dye (0.05% w/w Acid Yellow) and 3) Ditea Hydrodynamic prop-
erties: Viscosity of DI watery) is 1 mPa s, interfacial tension between water and minekal oi

is 3.65mNnT!, contact angle between water and PDMS 8, &8scosity of mineral oil with
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2% w/w Span 80 is 23.8 mPa.s. The fluids were pumped from ghsgyringes (Hamilton,
1.25ml) through the tubing (0.8 mm PTFE, Cole-Parmer) cotatkto inlets, with the help
of syringe pumps (KD Scientific, Model No. 781200). The DI erawith fluorescent stream
forms droplets (droplet A) at the Y-junction as seen in Fig/Vhen the fluorescent droplets
formed at the Y-junction reach the T-junction, the aque@agent stream (DI water) from
the side channel is merged to the droplets. The experimarrtsebserved under the Inverted
Fluorescence Microscope (Nikon Eclipse TE2000-S) witkedé magnification using Plan
Apro objectives and mercury lamp for illumination and bluéefi for visualisation. The
visualisation of the experiments were captured and recaitteugh the eye piece of the in-
verted microscope using a CCD camera (DCRDVD803E, SONY umed for the analysis

of the reliability of droplet merging process.

3 Testing

Experiments were carried out for the T-junction with expasthdection and for the conven-
tional T-junction designs. The combination of fluorescergam flow rates@sy,) and DI
water flow rates Qp;) were from Oul/hr to 250 ul/hr in the interval of 25ul/hr, and the
mineral oil flow rate was maintained at the ratio of 1.5 to therféscent flow rate. Between
0 pl/hr to 25 ul/hr, intermediate flow rates of 1@l/hr to 20 ul/hr were also used to measure
the merging percentage. The flow rate ratio (FR) betweennalind and fluorescent was
kep constant at 1.5 with the aim that the droplets should b&ndong or too short for this
merging process. We found this ratio by changing the ratimf®.1 to 4.0, with keeping the
flow rate of fluorescence constant atfiehr. The corresponding picture is shown in Fig. 2,
in which it is seen that the flow rate ratio from 1 to 2.5 proddeeplet which are not too

long or too short. We chose 1.5 and kept constant througlheuexperiments. The videos
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of the experiments were recorded for both the conventiogahgtion and T-junction with

expanded section designs.

4 Results and discussion

4.1 Reliability of the merging process

The recorded videos of the experiments were used to caécthlatreliability of the merging
process by counting the number of successfully merged etprhe percentage of reliable

merging for a particular flow rate combination was calcudads follows,

@)

%Reliability — number of successfully merged droplets ) «
total number of droplets generated for merging

The contour lines indicating percent rate of droplet megdior T-junction alone and
T-junction followed by an expansion of 150m were constructed and are shown in Figs.
3 and 4. Reliable merging (100%) for T-junction happens iregywnarrow range of flow
rates (below the dashed contour line) as seen in Fig. 3 angimyen a wide range of flow
rate ratio gives the extra droplet problems. Microchannigh W-junction followed by an
expansion provides reliable merging in a wide range of flotesand flow rate ratio as
seenin Fig. 4. The region of reliable merging is wide (redietween dashed contour lines)
and droplets are merged reliably in a wide range of fluordsitenw rates except at high
DI water flow rates (bottom right) and low fluorescent flow safp-left). It is because at
higher flow rates of DI water, not enough fluorescent drofatsplet A) are formed. The
low fluorescent stream cannot overcome the pressure drogrioécfluid (mineral oil) as
well the pressure drop due to high DI water flow rate to formptets at the Y-junction.

Therefore the merging percentage is low for high DI water ftate at the top-left region in
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Fig. 4. But when the flow rate becomes slightly higher, fluoeas$ stream can overcome the
pressure drop and form enough droplets to merge reliably.

Outside the high percentage success, in general, theraraedcenarios: 1) when the
DI water flow rate is high and the fluorescent flow rate is lovir@xroplets (droplet B)
form and the merging percentage goes down; when the DI waterd8te is very high, only
droplet B forms, which is not desirable as no merging is gadssR) when the fluorescent
flow rate changes from very high compared to DI water flow rBieyater stream cannot
overcome the pressure drop to merge continuously with dt@pl3) when both fluorescent
flow rate and DI water flow rate are very high, stratified flowwrsg which is not desirable

for the merging process.

4.2 Droplet volumes and droplet formation time

Fig. 5 shows a sample of measurements for the volume of ti@eisogenerated at the Y-
junction for various flow rates of DI water with mineral oil Wiorate fixed at the ratio of
1.5 with respect to the fluorescence flow rate for the droplerging process. The droplet
generated are consistent over time with volumes in the afdfew nanolitres with less than
10% standard deviation as seen in Fig. 5. Fig. 6 shows thdedreplumes generated for
various flow rates of fluorescence from the side channel aT{a@ction with expansion
and without expansion. These droplet volumes in the ranf@wohanolitres were measured
from the experiments without the merging process. The veloirthe droplets generated at
the T-junction with expansion is higher than the volume afpdiets generated at T-junction
without expansion.

Fig. 7 shows the droplet formation time at the T-junctionhrkpansion and without ex-

pansion. As expected, the droplet formation time at thentgon with expansion is higher
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than the time for the T-junction without expansion. Thisrease in volume and time is
due to the expanded section, which reduces the pressuredadability of extra space for
droplet growth leads to longer residence time for the ditogi¢he T-junction.

The reliability of the merging process with an expandediseatas analysed by mea-
suring the droplet length before merging and after merdtimgy. 8 shows the droplet lengths
measured before merging and after merging for differentdsent flow rates and DI water
flow rates. As we can see from Fig. 8, the length of dropletsplét A) generated at the Y-
junction (before merging) is consistent and the dropletiva decreases with the increase
in the fluorescene flow rate. This also reflects in the amoubt @fater merged into it at the
T-junction with expansion. As the droplet length goes datlva,amount of DI water merged
to it also goes down because of the small residence time éodrbplet the T-junction. As
the DI water flow rate is increased, the amount of DI water dddethe same length of
droplet also goes up due to higher volume flow rate of DI wdtee length of droplets after

the merging process is also consistent as seen in Fig. 8.

4.3 Flow physics in the merging process

The increase in the reliability of the merging process infjenction with expanded section
design can be explained as follows. Figure 9(a-c), showselgeence of droplet break-up
due to pressure build up at a normal T-junction. But, the eslpd region right after the
T-junction allows the carrier fluid to move forward avoidittge pressure build up beyond
threshold-level and break-up of droplet B from the T-juactiNow, two things can happen

for the droplet forming from the side channel:

1. droplet sticks to the T-junction due to surface tensich@nows in the expanded region

(Fig. 9(d-e)) until the droplet A merges with it (Fig. 9(f)).



192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

10

2. droplet breaks away because of high droplet volume (Figa)}), due to longer waiting

time for the droplet A to arrive.

In the first case, after merging, the merged droplets areszgagrom the T-junction due
to pressure build up across the droplet as in the normal elré@mmation process, because
now the merged droplet fully occupies the channel. In thesegcase, droplet B and droplet
A coalesce in the expanded region. The expanded regiorntdéed the droplets to come
closer and coalesce, as seen in ( Fig. 10(b)), because iliket time delay component
and delays the forward movement of the extra-droplet in tleeaohannel. When the delay
time is long, extra droplets occur and the merging percengggs down. The sequence of

droplet coalescence is seen in Fig. 10(a-d).

The expanded section not only eliminates the extra droptetdtion but also enhances
droplet merging and can be explained as follows: the exmaesprovided by the expanded
region reduces the pressure build up that happens in théetifopmation at the T-junction
and it is less than the threshold value for droplet breakthp; carrier fluid movement
through the extra space exerts shear stress on the dropi@népfrom the side channel;
therefore, the droplet formation dynamics has been chabgeide expanded section at the
T-junction from purely pressure dominant break-up to a doatipn of pressure drop and
shear due to the flow of carrier fluid; the combination of stegrss and pressure buildup
distorts the interfacé [11] and makes it flat, as seen in Kif). The distortion remains until
the fluorescent droplet (droplet A) hits the emerging DI walt@plet (droplet B)(See ESI
Moviel).

When the interface is flat, the curvature becomes low andatieis of curvature ap-
proaches infinity; based on the Young-Laplace equation|dcappressure jumghR_ ex-

erted by the interface on the emerging droplet in a rectamgtilannel can be described
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as,AR. = o (1/Ry+ 1/Ry), whereao is the interfacial tension between the two phasys,
andR;, are interface curvatures in width and height directionpeesvely; Laplace pressure
jump, AR, across the interface is negligibly small and when the flsceat droplet (droplet
A) hits the DI water droplet (droplet B) at the T-junctionethmerge easily without breaking
the DI water droplet from the T-junction. Small Laplace m@® jump across the interface
lowers the disturbance needed to rupture the thin film betwiee droplets and it reduces
the possibility of droplet B breaking from the T-junctiontae moment droplet A hits it.
When the external pressure increases above the interrsdypeeat a point on the droplet

surface, the droplets break up and the constituents merge.

4.4 Enhanced mixing

The merging and the coalescence patterns of droplets dugptméed section enhances
mixing, because after merging the merged fluids are in akiahgement inside the droplets
as seen in Figs. 9(f) and 10(d). Tanthapanichakoon et _g.r&®rted that axial arrange-
ment of droplet constituents enhances mixing and it can tobted to the reduction of
the striation length between reactant segment by inteiilayeSimilar results for enhanced
mixing due to axial arrangement (in-line droplet fusionydaeen reported by Liu et al. and
Frenz et al.[[24,25]. Therefore, it can be stated that axiangement of droplet constituents

in this merging design lead to enhanced mixing.

5 Conclusions

In conclusion, we demonstrate a design that exploits theipbyof fluid flow phenomena
in microchannels to eliminate the drawbacks in adding resgimto the droplets at a T-

junction. An expanded section, right after the T-juncticguces the pressure build up and
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increases the residence time of the droplet at the T-jumcitothe case of droplet break-up,
it facilitates the coalescence of the droplets and reddeeprobability of the formation of
extra droplet. Holding the droplet at the T-junction leadgHhe distortion of the interface
of the emerging droplet and becomes flat because of the stness and pressure buid-up
due to the moving carrier fluid. A flat interface, accordingtie Laplace-Young equation,
results in low Laplace pressure between two phases and egghéme merging of miscible
droplets. Reagent addition in this design leads to axiargement of the droplets con-
stituents in the merging as well as in the coalescence parebfacilitates faster mixing of
reactants. Therefore, the demonstrated design providetiex llternative for the available
merging schemes and can be effectively used in the micraflaldps used for biological,
bio-chemical andu-TAS assays. Effects of expansion width and length of thearedpd
section on the reliability of reagent addition to the dropheill be carried out in the future.
Acknowledgement.The authors gratefully acknowledge the support from thengge
of Science, Technology and Research$AAR), Singapore (grant number SERC 0521010108

“Droplet-based micro/nanofluidics”)
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Captions of figures

Fig. 1 Schematic of the droplet merging channel with expansib®, is the interfacial
pressure difference between the oil and DI water

Fig. 2 Length of droplets vs flow rate ratios of mineral oil and flismence

Fig. 3 Critical volume of the droplets formed at the Y-junction

Fig. 4 Critical volume of the droplets formed at the conventionglfiction and T-
junction with expansion

Fig. 5 Time for droplet formation at the conventional T-junctiondaT-junction with
expansion

Fig. 6 Contour plot for merging of reagents into droplets with cemvonal T-junction

Fig. 7 Contour plot for merging with T-junction and subsequentaggion

Fig. 8 Droplet merging phenomena in: (a-c) - extra droplet fororatn a conventional
T-junction, (d-f) -merging of droplets before break off infgunction followed by an ex-
panded section

Fig. 9 Coalescence of droplets in the expanded section afteretropak-up

Fig. 10 Droplet lengths before merging and after merging for vesifhow rates of fluo-

rescence and DI water
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Fig. 1 Schematic of the droplet merging channel: a) conventiorahttion b) T-junction with expansion.

AR, is the interfacial pressure difference between the oil ahdidder
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Fig. 4 Contour plot for merging with T-junction and subsequentasgion
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Fig. 5 Volume of the droplets formed at the Y-junction
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Fig. 6 Critical volume of the droplets formed at the conventionglifiction and T-junction with expansion
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Fig. 8 Droplet lengths before merging and after merging for vasiffow rates of fluorescence and DI water
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Fig. 9 Droplet merging phenomena in: (a-c) - extra droplet fororain a conventional T-junction, (d-f) -
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Fig. 10 Coalescence of droplets in the expanded section afteretrbmak-up
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