<table>
<thead>
<tr>
<th>Title</th>
<th>Interfacial reactions of Ni on Si$_{1-x}$Ge$_x$ (x=0.2, 0.3) at low temperature by rapid thermal annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhao, H. B.; Pey, Kin Leong; Choi, W. K.; Chattopadhyay, Sujay; Fitzgerald, Eugene A.; Antoniadis, D. A.; Lee, Pooi See</td>
</tr>
<tr>
<td>Citation</td>
<td>Zhao, H. B., Pey, K. L., Choi, W. K., Chattopadhyay, S., Fitzgerald, E. A., Antoniadis, D. A., et al. (2002). Interfacial reactions of Ni on Si$_{1-x}$Ge$_x$ (x=0.2, 0.3) at low temperature by rapid thermal annealing. Journal of Applied Physics, 92, 214-217.</td>
</tr>
<tr>
<td>Date</td>
<td>2002</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/8031</td>
</tr>
</tbody>
</table>

© 2002 American Institute of Physics. This paper was published in Journal of Applied Physics and is made available as an electronic reprint (preprint) with permission of American Institute of Physics. The paper can be found at the following official URL: http://dx.doi.org/10.1063/1.1482423. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Interfacial reactions of Ni on Si$_{1-x}$Ge$_x$ (x=0.2, 0.3) at low temperature by rapid thermal annealing

H. B. Zhao
Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576, Republic of Singapore

K. L. Peya and W. K. Choi
Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576, Republic of Singapore and Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Republic of Singapore

S. Chattopadhyay
Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576, Republic of Singapore

E. A. Fitzgerald
Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576, Republic of Singapore and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

D. A. Antoniadis
Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576, Republic of Singapore and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

P. S. Lee
Department of Materials Science, National University of Singapore, Kent Ridge Crescent, Singapore 119670, Republic of Singapore

(Received 5 November 2001; accepted for publication 9 April 2002)

The interfacial reaction of Ni with relaxed Si$_{1-x}$Ge$_x$ (x=0.2,0.3) films in the low temperature range, viz., 300–500 °C, has been investigated and compared with that of Ni with Si (i.e., x=0). Ni$_2$(Si$_{1-x}$Ge$_x$) and Ni$_3$(Si$_{1-x}$Ge$_x$)$_2$ were observed at 300 °C whereas a uniform film of NiSi$_2$Ge$_x$ was formed at 400 °C for both Si$_{0.8}$Ge$_{0.2}$ and Si$_{0.7}$Ge$_{0.3}$ substrates. At 500 °C, a mixed layer consisting of NiSi$_2$Ge$_x$ and Si$_{1-x}$Ge$_x$ was formed with a relation of z>x>y. Sheet resistance measurement results show that the silicided film attains its lowest value at an annealing temperature of 400 °C. The approximate values of the resistivity of the corresponding uniform NiSi$_2$Ge$_x$ (x=0.2, 0.3) derived from the transmission electron microscope and sheet resistance results are 19 and 23 μΩ cm, respectively. © 2002 American Institute of Physics. [DOI: 10.1063/1.1482423]

1. INTRODUCTION

SiGe alloys offer significant potential applications in the fabrication of high-speed electronic and optoelectronic devices.$^{1-3}$ For SiGe device applications, a metallic-like/
Si$_{1-x}$Ge$_x$ contact fabricated using a technology similar to the salicide (self-aligned-silicide) process plays a key role for the proper operation of the circuits. 4 Recently, the interfacial reactions of metal/Si$_{1-x}$Ge$_x$ have been studied for many metal films. This includes Ti, Co, Pt, Pd, and Ni.$^{5-9}$ A ternary compound (i.e., metal–germanosilicide) is generally formed. Ge segregation has been observed at annealing temperatures above 300 °C for Ni reacting with Si$_{0.76}$Ge$_{0.24}$ by vacuum annealing for 30 min.10 As Ge segregation will degrade the contact performance significantly, low temperature annealing silicidation processes using rapid thermal annealing (RTA) to reduce Ge segregation are preferred for future SiGe based devices.

For future SiGe based device application, the silicide technology must be thermally stable and form a uniform low sheet resistivity silicide film for a wide range of Ge concentrations. Among metal silicides, nickel monosilicide (NiSi) is currently one of the most promising candidates for the next generation of deep submicron Si based integrated circuits.11 NiSi possesses low resistivity, low silicon consumption, low processing temperature, and is relatively insensitive to the linewidth of the Si substrate.10,12,13 To leverage the advent of Ni silicide process in the Si technology for SiGe based microelectronic applications, the interfacial reactions of Ni with relaxed Si$_{1-x}$Ge$_x$ (x=0.2,0.3) films in the temperature range of 300–500 °C was studied.

II. EXPERIMENT

The relaxed Si$_{1-x}$Ge$_x$ films were grown with the ultra-high vacuum chemical vapor deposition (UHVCVD) technique. A SiGe buffer layer was grown on p-type (100) silicon wafers to the desired concentrations at a grading rate of 10% Ge μm$^{-1}$, at 900 °C and 25 mT, prior to the deposition of a
2.5 μm relaxed SiGe film. Details of the growth conditions and the characterizations of the relaxed SiGe films can be found elsewhere.14–16 Prior to Ni deposition, the relaxed SiGe films were cleaned by the standard RCA method and then immediately loaded into an evaporation chamber. Atomic force microscopy (AFM) analysis showed that the relaxed SiGe films maintained the characteristic cross-hatch pattern after the clean. Ni films of about 280 Å thick were deposited onto the relaxed SiGe at room temperature by electron gun evaporation at a rate of 0.5 Å/s. The base pressure was below 1.0×10⁻⁶ Torr. RTA was carried out within a temperature of 300–500 °C for 60 s in an N₂ ambient. The silicid films were analyzed by x-ray diffraction with a Cu Kα radiation at a fixed incident angle of 0.5° (Philips X-pert X-ray Diffractometer), and cross-section transmission electron microscopy with energy dispersive spectroscopy (EDS) analysis (Philips CM200 TEM/EDS system). The accuracy of the EDS measurements is about 1 at. % with an electron probe size of 1 nm used in our experiments. The four-point probe method was used to measure the sheet resistance.

III. RESULTS AND DISCUSSION

Figure 1 shows the XRD spectra of Ni-silicided Si₁₋ₓGeₓ films annealed in the temperature range of 300–500 °C for 60 s. In addition, the x-ray diffraction result of a Ni-silicided Si film annealed at 400 °C for 60 s is included for comparison. The XRD spectra of the Ni-silicided SiGe films annealed at 300 and 500 °C is much higher than that at 400 °C. The minimum value of the sheet resistance of NiSi₂ grains, its lattice constant becomes smaller leading to a shift in the peaks towards higher 2θ value. The characteristic peaks of Ni(Si₁₋ₓGeₓ) annealed at 500 °C are similar to that of NiSi (Ref. 19) formed during the silicidation of Ni with Si at 400 °C. This similarity is attributed to the lesser Ge concentration in the Ni(Si₁₋ₓGeₓ) grains.

The sheet resistance of the Ni-silicided films on relaxed Si₁₋ₓGeₓ (x = 0.2, 0.3) and Si at different annealing temperatures is shown in Fig. 2. It is seen from Fig. 2 that all of the silicid films have attained their minimum sheet resistance value at 400 °C. The minimum value of the sheet resistance of the Ni-silicided film on Si₁₋ₓGeₓ is ~3.9 Ω/sq for x = 0.3 and ~3.5 Ω/sq for x = 0.2, while that on Si is ~2.3 Ω/sq. After taking into account the effect of the as-deposited Ni thickness, the sheet resistance of the Ni-silicided film on Si₁₋ₓGeₓ remains higher than that of Si. It is worth noting that the sheet resistance of the Ni-silicided films on Si₁₋ₓGeₓ films annealed at 300 and 500 °C is much higher than that at 400 °C. On the other hand, the sheet resistance remains almost unchanged for the Ni-silicided film on Si in the temperature range of interest. This is attributed to the larger resistivity of Ni(Si₁₋ₓGeₓ) than that of Ni(Si₁₋ₓGeₓ) and the presence of Ge-rich SiGe grains inside the Ni-silicided films on Si₁₋ₓGeₓ substrates. The difference in the increased gradient of the sheet resistance between the Ni-silicided Si₁₋ₓGeₓ film and the Ni-silicided Si₁₋ₓGeₓ film was found to be due to the different amount of SiGe grains present in the silicided films.

The cross-section TEM micrographs of the typical Ni-silicided Si₁₋ₓGeₓ films annealed in the temperature range of 300–500 °C for 60 s are shown in Fig. 3. As shown in Fig. 3(a), the Ni-silicided Si₁₋ₓGeₓ film annealed at 300 °C has a rather rough interface with the relaxed SiGe substrate. Its EDS results show that the silicid film is mainly composed of Niₓ(Si₁₋ₓGeₓ) with a variable y (0.15 ≤ y ≤ 0.2), while a few Niₓ(Si₁₋ₓGeₓ)₂ grains with a variable z around 0.3 co-

FIG. 1. XRD spectra of Ni-silicided Si₁₋ₓGeₓ (x = 0.2, 0.3) films annealed at different temperatures for 60 s. XRD spectrum of the Ni-silicided Si film annealed at 400 °C for 60 s is also included for comparison.

FIG. 2. Plots of sheet resistance of the Ni-silicided Si₁₋ₓGeₓ (x = 0.2, 0.3) and Si samples annealed at different temperatures for 60 s. The as-deposited Ni thickness is ~350 and ~280 Å on Si and SiGe, respectively.
exist in it. At 400 °C, the EDS results of the uniform Ni-silicided film show that it is a layer of Ni(Si$_{1-x}$Ge$_x$) with a Ge concentration which is the same value as that of SiGe substrates for both $x = 0.2$ and $x = 0.3$. The Ni-silicided Si$_{1-x}$Ge$_x$ films annealed at 500 °C consist mainly of a mixture of Ge-deficient Ni(Si$_{1-y}$Ge$_y$) ($y < x$) grains and Ge-rich Si$_{1-z}$Ge$_z$ ($x < z$) grains, where x is the Ge concentration of SiGe substrates. For example, $y = 0.1$ and $z = 0.65$ for the $x = 0.3$ sample shown in Fig. 3~d. In Figs. 3(b) and 3(c), the thickness of the Ni-silicided Si$_{1-x}$Ge$_x$ film annealed at 400 °C is about 60 and 55 nm for $x = 0.3$ and $x = 0.2$, respectively. Thus the resistivity of Ni(Si$_{1-x}$Ge$_x$) film is estimated to be about 19 and 23 μΩ cm, for $x = 0.2$ and 0.3, respectively.

We were surprised to observe the Ni$_3$(Si$_{1-z}$Ge$_z$)$_2$ phase in our experiments since Ni$_3$Si$_2$ is generally not observed in the thin film reaction of Ni with crystalline silicon due to the complicated structure of Ni$_3$Si$_2$ that is orthogonal, while it could be formed easily in the reactions of bulk couple or powder of Ni with Si. Since both Ni$_3$Si and NiSi have a similar crystal structure and belong to the same space group, this leads to a high activation energy required for the Ni$_3$Si$_2$ formation. Gas et al. suggested that the absence of Ni$_3$Si$_2$ in the sequence of phases formed from the thin film reaction of Ni with Si is due to the requirement of relatively high nucleation temperature that is larger than the initial temperature of the formation of NiSi. In the interaction of Ni particles with amorphous Si film, however, the formation of a Ni$_3$Si$_2$ phase was observed. The fast rate of nickel diffusion in amorphous silicon or higher rates of reaction front propagation were proposed to be the possible reasons of the formation of Ni$_3$Si$_2$. On the other hand, we postulate that in the presence of Ge, as a Ge atom is larger than that of Si, the Si in the Si–Ge system has a higher mobility than Ge leading to a reduction of the activation energy for the formation of Ni$_3$Si$_2$ grains as well as making the reaction kinetics favorable. In addition, the degree of symmetry of Ni$_3$(Si$_{1-z}$Ge$_z$)$_2$ is possibly lower than that of Ni$_3$Si$_2$ due to the large size of Ge atoms and therefore Ni$_3$(Si$_{1-z}$Ge$_z$)$_2$ can be formed more easily. Both of the above reasons could lead to the formation of Ni$_3$(SiGe)$_2$ in relaxed SiGe. However, to understand the exact mechanisms for the formation of the Ni$_3$(SiGe)$_2$ phase in the thin film reaction of Ni with relaxed SiGe film, additional studies are needed.

IV. CONCLUSION

In summary, uniform and low sheet resistivity NiSiGe films can be formed on relaxed Si$_{1-x}$Ge$_x$ ($x = 0.2, 0.3$) at 400 °C annealing temperature. Ni$_3$(Si$_{1-z}$Ge$_z$)$_2$ and Ni$_3$(Si$_{1-x}$Ge$_x$)$_2$ were detected for samples annealed at a lower temperature of 300 °C. A mixed layer consisting of Ni(Si$_{1-y}$Ge$_y$) and Si$_{1-z}$Ge$_z$ was formed with a relation of $z > x > y$ for a higher anneal temperature of 500 °C. The variations in the measured sheet resistance values of the Ni-silicided Si$_{1-x}$Ge$_x$ films annealed at different temperatures are attributed to the differences in the resistivity and composition of different chemical phases of the Ni-silicided films.
400 °C was found to be a suitable temperature for forming uniform Ni-silicide films on Si$_{1-x}$Ge$_x$ alloy in the range of interest.

ACKNOWLEDGMENTS

The authors would like to acknowledge the Singapore-MIT Alliance (SMA) for providing all the necessary resources. In addition, H. B. Zhao would like to acknowledge SMA for providing his research scholarship.