<table>
<thead>
<tr>
<th>Title</th>
<th>The preparation of Al2O3/M (Fe, Co, Ni) nanocomposites by mechanical alloying and the catalytic growth of carbon nanotubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ding, Jun; Liu, Bing Hai; Dong, Zhili; Zhong, Z. Y.; Lin, J. Y.; White, Timothy John</td>
</tr>
<tr>
<td>Date</td>
<td>2003</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/8294</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2004 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Composites: Part B, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1016/S1359-8368(03)00050-7.</td>
</tr>
</tbody>
</table>
The preparation of Al$_2$O$_3$/M (Fe, Co, Ni) nanocomposites by mechanical alloying and the catalytic growth of carbon nanotubes

J. Dinga, B. H. Liua, Z. L. Dongb, Z. Y. Zhongc, J. Y. Linc, T. Whiteb

aDepartment of Materials Science, Faculty of Science, National University of Singapore, Lower Kent Ridge Road, Singapore 119260 Singapore

bEnvironmental Technological Institute of Singapore, Singapore 637723, Singapore

cDepartment of Physics, Faculty of Science, National University of Singapore, Singapore 119260, Singapore

* Corresponding author. Tel.: +65-874-4317; fax: +65-776-3604. E-mail address: masdingj@nus.edu.sg (J. Ding).

ABSTRACT

Mechanical alloying was employed to produce Al$_2$O$_3$/M (M=Fe, Co, Ni) nanocomposites. It was found that high-energy mechanical milling could realize not only drastic refinement but also the well dispersion of catalyst precursors in oxide matrixes. After mechanical milling, the solid-state alloying and the accelerated substitutional reactions were observed between the parent oxides. The as-obtained Al$_2$O$_3$/M nanocomposites possessed the fine-grained and porous structures and thus high reducibility. Large-scale formation of multiwalled and single-walled carbon nanotubes were achieved by using these mechanical alloying-derived Al$_2$O$_3$/M nanocomposites.

1. INTRODUCTION

Carbon nanotubes (CNTs) are promising nanostructured materials due to their extraordinary mechanical, electric and thermal prosperities. Their light, strong and high toughness characteristics endow them the promising potentials of the applications on the advanced nanocomposites, such as nanotubes/polymer composites [1].

For the catalytic growth of CNTs, one of the key processes is to get sufficiently small metallic particles, which are active enough for the catalytic decomposition of carbon-containing gas [2]. To avoid the rapid coarsening of metallic nanoparticles at high temperature during reduction and carbonization reactions, substrates (usually oxides) always plays crucially important roles. In this sense, the uniform dispersion of catalyst precursors (transition metal oxides) in the substrates is definitely the first important step. Currently, the methods for the precursor preparation were usually based on the wet-chemistry processes, such as sol–gel [3], co-precipitation [4] and impregnation processes [5] as well as the formation of the solid solution between the parent oxides [6]. These methods have been widely employed to produce suitable catalyst for the growth of either
single-walled CNTs (SWCNTs) or multi-walled CNTs (MWCNTs). However, the precursors obtained by these methods are generally required to be thermally treated at certain temperature in order to get desirable phase compositions, for instance, the decomposition of nitrates into oxides [3–6]. This leads to the formation of large-sized agglomerates and thus a large amount of catalyst precursors are trapped inside the agglomerates, which will definitely decrease the productivity of CNTs.

As it is well known, mechanical milling is a powerful tool for producing nanosized powders and nanocomposite materials [7–10]. In addition, high-energy mechanical milling can often accomplish the solid-state alloying, mechanical alloying. Such kinds of mechanical activation effects permit the formation of equilibrium or non-equilibrium phases directly without any thermal treatments or with low-temperature annealing [11–15]. In this work, mechanical alloying process was employed for the preparation of Al$_2$O$_3$/M (M=Fe, Co, Ni) nanocomposites on which MWCNTs and SWCNTs were produced with high yields. The effects of mechanical alloying on the morphologies and phase compositions of catalyst precursors and thereby the morphologies and productivity of as-grown CNTs were studied.

2. EXPERIMENTS

A mixture of transition metal (nickel, cobalt and iron) hydroxides powders and Al$_2$O$_3$ powder was mechanically milled for 24 h using Spex 8000 high-energy shaker mill. The mass ratio of Al$_2$O$_3$ to metal hydroxides was fixed, corresponding to 20 wt% transition metal oxides. For studying the effects of catalyst-loading, another batch of Al$_2$O$_3$/FeO$_x$H$_y$ sample was also prepared by mechanical milling with the mass content of Fe$_2$O$_3$ equal to 5 wt%. In order to study the reduction behaviors of different samples, hydrogen reduction were conducted at different temperatures for 40 min. The growth of CNTs was conducted in methane gas at the temperatures between 600 and 1000 °C for 40 min.

For the mechanical-alloying derived samples before and after hydrogen reduction, their phase compositions were examined by X-ray diffraction (Philips PW 1820 diffractometer with Cu K_{α} radiation). In order to monitor the reduction of different samples, magnetic measurements (superconducting vibrating sample magnetometer (VSM), Oxford instruments) were carried out at room temperatures. The saturation magnetization (M_s) was measured at the maximum magnetic field of 30 kOe. In addition, for Al–Fe–O nanocomposites, room-temperature 57Fe Mössbauer spectrometer was used for the analysis of the phase changes induced by mechanical alloying and hydrogen reduction. The morphologies of nanocomposites before and after hydrogen reduction were studied by transmission electron microscope (TEM, JEM-100CX) and Field-emission Scanning Electronic Microscopy (FE-SEM, Philips, XL30FEG). SEM, low-resolution TEM and High-resolution transmission electronic microscopy (HRTEM, JEL-300CX) were used for the study of the morphologies of carbon products.

3. RESULTS AND DISCUSSIONS

3.1. The preparation of precursors
After the mechanical milling for 24 h, all the as-milled powders had amorphous similar structures. In the following, we showed as-milled Al$_2$O$_3$/FeO$_x$H$_y$ sample as the typical example to illustrate the effects of mechanical milling on the phase compositions and morphologies of the sample.

Fig. 1(a) showed the XRD spectra of as-milled Al$_2$O$_3$/FeO$_x$H$_y$ sample. The disappearance of any diffraction peaks indicated amorphous similar structures of the as-milled samples. The phase changes before and after the mechanical milling were well revealed by the results of Mossbauer analysis as shown in Fig. 2 and Table 1. It was obvious that mechanical milling had induced apparent changes in the chemical shift and quadrupole splitting in comparison to those of samples before milling. This meant that the atomic environment of iron species was changed after mechanical milling for 24 h.

Further thermal treatments were conducted for Al$_2$O$_3$/FeO$_x$H$_y$ samples in order to characterize the detailed effects of mechanical milling on phase changes of the powder. As seen from Fig. 1, the crystallization of as-milled Al$_2$O$_3$/FeO$_x$H$_y$ samples began at 400 °C and the well crystallization was accomplished at 800 °C.

After calcination, Mossbauer analysis showed that both the chemical shift and quadrupole splitting parameters further decreased with increase of calcination temperatures.

We found that the characteristic doublet due to Fe$^{3+}$ in the samples calcined at 800 °C or above was different from that in samples calcined at lower temperature. For the samples calcined at 800 and 1200 °C, the quadrupole splitting parameters were similar to each other, apparently smaller than those of the samples calcined at lower temperature. For these two samples, the quadrupole splitting parameters were in good agreement with those reported, accounting for the substitutional Fe$^{3+}$ ions in the Al$_2$O$_3$ lattice [16–18].

Of noteworthy is the sample calcined at 800 °C. Only a strong doublet was detected for this sample as shown by the Mossbauer analysis in Fig. 2. This indicated that 20 wt% Fe$_2$O$_3$ was fully dissolved into Al$_2$O$_3$, apparently higher than the conventional solubility limits (around 15 wt%) of α-Fe$_2$O$_3$ in Al$_2$O$_3$ phase [18]. XRD analysis (Fig. 1(c)) suggested that as-formed solid solution was monophased that was denoted as Al$_{1.75}$Fe$_{0.25}$O$_3$ phase. While for the samples without mechanical milling, such kind of monophased well-crystallized solid solution could not be formed at 800 °C. It is well known that mechanical alloying can always induce the formation of supersaturated solid solutions, the non-equilibrium phase with composition far from the equilibrium [19–21]. Therefore, the enhanced solubility of α-Fe$_2$O$_3$ in α-Al$_2$O$_3$ should be ascribed to the activation effects presented by the mechanical alloying.

The as-formed Al$_{1.75}$Fe$_{0.25}$O$_3$ solid-solution was a metastable phase. When the sample was calcined at 1200 °C, the segregation of α-Fe$_2$O$_3$ phase took place as shown by Fig. 1(d) and Table 1. Whereas, for the sample with 5 wt% Fe$_2$O$_3$, the calcination at both 800 and 1200 °C led to the formation of well-crystallized monophased solid solution that was
denoted as Al\(_{1.95}\)Fe\(_{0.05}\)O\(_3\). No segregation of \(\alpha\)-Fe\(_2\)O\(_3\) phase were observed. This could be readily ascribed to the low content of Fe\(_2\)O\(_3\).

Above experimental results suggested that high-energy mechanical milling could induce alloying effects and accelerate the substitution reactions between parent oxides. In Al–Ni–O and Al–Co–O systems, similar experimental results were also found for such alloying effects.

3.2. The reduction of the oxides

As mentioned above, one of the advantages of mechanical milling process over the chemistry-based processes lies in the fact that no thermal treatments are required. Therefore, the nanocrystalline structures obtained after mechanical milling can be maintained before the hydrogen reduction. This will definitely present positive effects on the reduction behaviors of as-milled samples. In the following, we showed as-milled Al\(_2\)O\(_3\)/NiO\(_x\)H\(_y\) samples as the typical example.

The reduction behaviors of the Al\(_2\)O\(_3\)/NiO\(_x\)H\(_y\) samples at different temperatures were indicated by the results of room-temperature magnetic measurements. The ratios of the as-measured saturation magnetization (\(M_s\)) to the theoretic \(M_s\) of the samples were taken as the reduction ratios that were plotted versus reduction temperatures as shown in Fig. 3.

As indicated by Fig. 3, it was obvious that the mechanically-milled Al\(_2\)O\(_3\)/NiO\(_x\)H\(_y\) samples possessed higher reducibility when compared with co-precipitation derived samples. The co-precipitation derived Al\(_2\)O\(_3\)/NiO sample underwent the thermal treatment at 500 °C. The different reducibility between the mechanically-alloyed samples and co-precipitation derived samples could be ascribed to the difference in their morphologies. SEM study (Fig. 4) showed that, after the reduction at 700 °C, the co-precipitation derived Al\(_2\)O\(_3\)/Ni nanocomposites showed much larger particle size of several tens of micrometers. Also the smooth surface as-observed under SEM suggested the possible occurrence of sintering. While for mechanical-milling derived samples, after reduction at 700 °C, the nanocomposites appeared fine-grained structure with much smaller average particle size. Close analysis of the agglomerates in this sample revealed their rather loose and porous structures. This might be due to the fact that the co-precipitation derived samples underwent the thermal treatment at 500 °C before H\(_2\) reduction while no pre-calcination treatment was conducted for the as-milled samples. In this sense, it was reasonable to attribute the high reducibility of mechanically-alloyed samples to their porous and fine-grained structural features. During hydrogen reduction, the porous structure of the as-milled samples provides favorable paths for H\(_2\) penetration, resulting in a greatly accelerated reduction progress.

In addition, from the X-ray analysis, we calculated the Ni particle size for different catalytic powders by using the Scherrer formula. It was found out that average size of as-reduced Ni nanoparticles was around 10 nm.

For the as-milled Al\(_2\)O\(_3\)/CoO\(_x\)H\(_y\) samples, similar results were obtained as indicated by Fig. 2. As to the as-milled Al\(_2\)O\(_3\)/FeO\(_x\)H\(_y\) samples, lower reducibility was observed in
comparison to as-milled α-Al$_2$O$_3$/NiO$_x$H$_y$ and α-Al$_2$O$_3$/CoO$_x$H$_y$ samples. This should be attributed to the low reducibility of iron oxides in terms of thermodynamics. However, when compared with co-precipitation derived Al$_2$O$_3$/Fe$_2$O$_3$ sample, the mechanical-milling derived sample still possessed apparent higher reducibility.

3.3. The growth of CNTs

Above experimental results indicated that mechanical milling could be an efficient way to produce oxide/metal nanocomposites. The high reducibility of the as-milled samples and the nanometric size of as-reduced metal nanoparticles suggest the promising potential of mechanical milling in the production of suitable catalytic nanocomposites for the growth of CNTs. In the following, we demonstrated that the mechanical-milling derived catalysts could be ideal candidates for the catalytic growth of either multi-walled or SWCNTs.

3.3.1. The effects of the preparation processes of catalyst precursors

In order to compare the catalytic behaviors of the catalysts prepared by different processes, two kinds of processes, mechanical alloying and co-precipitation were employed to produce the Al$_2$O$_3$/Ni catalyst powders in this work. The catalysts reduced at 450 °C were used for the catalytic growth of CNTs. The comparison between the CNTs derived from these two different catalysts indicates much higher efficiency of CNT growth on the mechanical alloying-derived catalyst. As shown by Fig. 5, the yield of CNTs was apparently higher for mechanical alloying-derived catalyst (Fig. 5(b)) than that for the co-precipitation-derived catalyst (Fig. 5(a)). As shown in Fig. 5(a), the Al$_2$O$_3$ matrix particles were so less covered by CNTs that their primary surfaces and edges could be clearly observed. While in Fig. 5(b), the thick web of CNTs made the particles appear as downy spheres. The higher yields for the for mechanical alloying-derived catalysts can be readily attributed to the higher content of Ni phase after reduction, as indicated by Fig. 2, although both catalysts and CNT products were obtained under the same conditions. Fig. 6(a) and (b) were the TEM images of CNTs grown the co-precipitation derived catalysts and mechanical alloying-derived catalysts. For both cases, the obtained CNTs appeared as long and curved multi-walled tubes. The diameters of these tubes were uniform throughout the length and in the range of 10–15 nm.

3.3.2. The effects of different kinds of catalysts

For mechanical alloying derived Al$_2$O$_3$/Co catalysts, their catalytic behaviors for the growth of MWCNTs were similar to those of Al$_2$O$_3$/Ni catalysts. Fig. 7(a) showed the SEM image of CNTs grown on Al$_2$O$_3$/Co catalysts with the same growth conditions as those for Al$_2$O$_3$/Ni catalysts. Bountiful CNTs were obtained that densely covered the surface of the matrix grains, indicating the high activity of Al$_2$O$_3$/Co catalysts for the growth of CNTs. TEM analysis showed that CNTs obtained from Al$_2$O$_3$/Co catalysts were also multi-walled and these tubes were generally long with uniform diameters through the length, as seen from Fig. 8(a).
For mechanical alloying derived Al\textsubscript{2}O\textsubscript{3}/Fe catalysts, their growth conditions of CNTs were quite different those of Al\textsubscript{2}O\textsubscript{3}/Ni and Al\textsubscript{2}O\textsubscript{3}/Co catalysts. Due to the low reduction ratio of Fe\textsubscript{2}O\textsubscript{3} phase, there was no apparent carbon deposition for Al\textsubscript{2}O\textsubscript{3}/Fe catalysts at the temperatures below 600 °C. Therefore, in the following we showed the CNTs grown on Al\textsubscript{2}O\textsubscript{3}/Fe nanocomposites at the temperature of 1000 °C by using one-step method.

Fig. 7(b) showed the SEM image of CNTs grown at 1000 °C in H\textsubscript{2}/CH\textsubscript{4} mixture gases by using mechanical milling-derived Al\textsubscript{2}O\textsubscript{3}/Fe nanocomposites. As seen from them, the as-obtained carbon products appeared as somewhat and short and curved filaments. Beside these short filaments, a lot of spherical particles were also observed under SEM. TEM analysis showed that these filaments were thick-walled CNTs, as seen from Fig. 8(b). Therefore, different from Al\textsubscript{2}O\textsubscript{3}/Ni and Al\textsubscript{2}O\textsubscript{3}/Co catalysts, the mechanical alloying derived Al\textsubscript{2}O\textsubscript{3}/Fe catalyst showed much low catalytic activity for the growth of multiwalled CNTs. However, things were different when the Al\textsubscript{1.75}Fe\textsubscript{0.25}O\textsubscript{3} solid solution was used as the catalyst precursors. As seen from Fig. 7(c), many long and straight filaments were observed. TEM analysis revealed that these long and straight filaments were CNT bundles that consisted of small tubes (Fig. 8(c)). These were typical SWCNTs under low-magnification TEM. Besides these SWCNTs, some amounts of short, curved tubes and spherical nanoparticles were observed. Therefore, the comparison between Fig. 7(b) and (c) or Fig. 8(b) and (c) clearly indicated that the calcination of Al\textsubscript{2}O\textsubscript{3}/Fe\textsubscript{2}O\textsubscript{3} samples at 800 °C was helpful for improving the catalytic activity for the CNTs growth. This might be related to the more uniform distribution of Fe species in the alumina matrix due to the formation of solid solution phase. The in situ formed Fe nanoparticles from solution matrix were very small and uniformly dispersed and thus active enough for the formation of SWCNTs. This was further verified by the CNTs grown on Al\textsubscript{1.95}Fe\textsubscript{0.05}O\textsubscript{3} solid solution derived catalysts. As shown by Fig. 7(d), CNTs grown on these catalysts were usually straight and long with the length up to several tens of micrometers. They were tangled and cross linked together and formed thick webs that fully covered the surface of the matrix grains, suggesting the high productivity of CNTs. Fig. 8(d) was the typical TEM images of CNTs as shown in Fig. 7(d). Under low-magnification TEM, the straight CNTs observed under SEM were found to be CNTs bundles, same as those in Fig. 7(c). These bundles were cross-intersected together. Some bundles were as large as several tens of nanometers in diameters. High-resolution TEM analysis revealed that these CNT bundles consisted of SWCNTs with the diameters around 3–5 nm. Under high-resolution TEM, we selected 100 nanotubes for the rough estimation of the productivity of SWCNTs. It was found out that over 95% of CNTs were single-walled.

Therefore, by using the mechanical alloying-derived Al\textsubscript{1.95}Fe\textsubscript{0.05}O\textsubscript{3} precursors, we realized the large-scale production of SWCNTs. Such kind of high productivity of SWCNTs embodied the advantages of mechanical alloying-derived catalyst precursors for the growth of CNTs. On the one hand, mechanical alloying can accelerate the substitutional reactions between parent oxides and thus realize the low-temperature formation of well-crystallized solid solution. As a result, the fine-grained and porous structure of precursors were formed that made less catalyst precursors be trapped inside matrix grains. Therefore, upon reduction, more active catalytic sites were available for the formation of SWCNTs. In this sense, mechanical alloying process makes low catalyst
loading feasible and favorable for producing SWCNTs with high yields. The low catalyst loading and the nature of the simple processing setting-up of mechanical alloying might provide a convenient and cost-efficient way for large-scale production of SWCNTs.

4. CONCLUSION

Mechanical alloying was employed to produce Al₂O₃/transition metal (Fe, Co, Ni) nanocomposites on which large-scale formation of MWCNTs and SWCNTs were achieved. It was found out that:

1. The mechanical milling could result in the drastic refinement and uniform dispersion of catalyst precursors;
2. Compared with co-precipitation-derived catalyst precursors, mechanical-milling derived Al₂O₃/NiO precursors possessed porous and fine-grained structure. This resulted in their high reducibility and the high yield of MWCNTs;
3. Mechanical milling can induce solid-state alloying and accelerate the substitutional reactions between parent oxides (Al₂O₃ and Fe₂O₃). This led to the formation of monophased well-crystallized AlₓFeᵧOₓ solid solution after low-temperature thermal treatment;
4. The fine-grained and porous structures of low-temperature formed AlₓFeᵧOₓ solid solutions made the low-catalyst-loading feasible and favorable for the large-scale production of single-walled carbon nanotubes (SWCNTs). Over 95% of carbon nanotubes were SWCNTs when using equilibrium Al₁.₉₅Fe₀.₀₅O₃ solid solutions as the catalyst precursors.
REFERENCES

List of Figures

Figure 1 XRD patterns of as-milled Al₂O₃/Fe₂O₃ powders before calcination and after calcination at different temperatures: (a) as-milled for 24 h; (b) calcined at 400 °C; (c) calcined at 800 °C; (d) calcined at 1200 °C (a: α-Al₂O₃-type solid solution; x-Fe₂O₃).

Figure 2 Room-temperature Mössbauer spectra of the Al₂O₃/FeOₓHᵧ powder: (a) before mechanical milling; (b) mechanically milled for 24 h; (d) as milled powder after calcination at 800 °C; (e) as-milled powder after calcination at 1200 °C

Figure 3 The dependence of the reduction percentages of Al₂O₃/NiO, Al₂O₃/CoOₓHᵧ powders on the reduction temperatures.

Figure 4 SEM images of Al₂O₃/Ni nanocomposites after hydrogen reduction at 700 °C: (a) co-precipitation derived; (b) as-milled for 24 h.

Figure 5 SEM images of CNT products synthesized using Al₂O₃/Ni catalysts at 600 °C: (a) co-precipitation-derived catalyst; (b) mechanical-milling derived catalyst.

Figure 6 TEM images of CNT products synthesized using Al₂O₃/Ni catalysts at 600 °C: (a) co-precipitation-derived catalyst; (b) mechanical-milling derived catalyst.

Figure 7 SEM images of carbon nanotubes grown on different catalysts and at different temperatures: (a) Al₂O₃/Co catalysts, R450 °C/C600 °C; (b) mechanical-milling derived catalyst, R/C 1000 °C; (c) as-calcined Al₁.₇₅Fe₀.₂₅O₃-derived catalysts, R/C1000 °C; (d) as-calcined Al₁.₉₅Fe₀.₀₅O₃-derived catalysts, R/C1000 °C (R-reduction, C-carbonization).

Figure 8 TEM images of carbon nanotubes grown on different catalysts: (a) Al₂O₃/Co catalysts, R450 °C/C600 °C; (b) mechanical-milling derived Al₂O₃/Fe catalyst, R/C 1000 °C; (c) as-calcined Al₁.₇₅Fe₀.₂₅O₃-derived catalysts, R/C1000 °C; (d) as-calcined Al₁.₉₅Fe₀.₀₅O₃-derived catalysts, R/C1000 °C (R-reduction, C-carbonization).
List of Table

Table 1 Mössbauer parameters of as-milled Al₂O₃/FeOₓHᵧ samples before and after the calcination at different temperatures: CS, chemical shift/mm s⁻¹; ΔEₛ, quadrupole splitting/mm s⁻¹; H, hyperfine field/T; P, portion/%
Figure 2
Figure 3
Figure 4
Figure 6
<table>
<thead>
<tr>
<th>Sample</th>
<th>Doublet</th>
<th>Sextet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CS (mm s(^{-1}))</td>
<td>(\Delta f) (mm s(^{-1}))</td>
</tr>
<tr>
<td>Powder without milling</td>
<td>0.355</td>
<td>0.717</td>
</tr>
<tr>
<td>MA24 (as-milled for 24 h)</td>
<td>0.312</td>
<td>0.958</td>
</tr>
<tr>
<td>MA24/A400 °C</td>
<td>0.308</td>
<td>0.912</td>
</tr>
<tr>
<td>MA24/A800 °C</td>
<td>0.303</td>
<td>0.599</td>
</tr>
<tr>
<td>MA24/A1200 °C</td>
<td>0.298</td>
<td>0.572</td>
</tr>
</tbody>
</table>

Table 1