<table>
<thead>
<tr>
<th>Title</th>
<th>Mesoscopic organic nanosheets peeled from stacked 2D covalent frameworks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhang, Yugen; Tan, Meixuan; Li, Hai; Zheng, Yuangang; Gao, Shujun; Zhang, Hua; Ying, Jackie Y.</td>
</tr>
<tr>
<td>Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/8324</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Chemical Communications, The Royal Society of Chemistry. It incorporates referee's comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1039/C1CC12235E].</td>
</tr>
</tbody>
</table>
Mesoscopic organic nanosheets peeled from stacked 2D covalent frameworks†

Yugen Zhang,⁎a Meixuan Tan,⁎b Hai Li,c Yuangang Zheng,a Shujun Gao,a Hua Zhangc and Jackie Y. Ying⁎a

a Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore. E-mail: ygzhang@ibn.a-star.edu.sg, jyying@ibn.a-star.edu.sg; Fax: (+65) 6478-9081

b NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456

c School of Materials Science and Engineering, Nanyang Technological University, N3-B4-W310, 50 Nanyang Avenue, Singapore 639798

†Electronic supplementary information (ESI) available: Experimental details and spectroscopic data. See DOI: 10.1039/c1cc12235e

Novel mesoscopic organic nanosheets were developed by functionalizing bulk 2D organic covalent framework polymers with small molecules. The water-soluble fluorescent nanosheets are promising as nanocarriers for biological applications.

Nanosheets, which possess nanoscale features in the x–y plane, and single or limited atomic layers in the z axis, have emerged as important nanostructured materials due to their unique properties and potential applications.¹ Current studies of nanosheets are focused on inorganic materials (e.g. metal oxides and metal sulfides) and graphene-based materials.²–⁵ Two-dimensional (2D) polymer sheets are of great interest, however, the synthesis of free-standing polymeric sheets remains a major challenge, especially of mesoscopic (5–500 nm) organic nanosheets.⁶–⁹ In addition, functionalization of nanosheet materials for specific application is of great importance.

Porous organic frameworks have been created via the cross-coupling of rigid monomers.¹⁰–¹⁴ 2D covalent organic frameworks can spontaneously assemble to form macroscopic three-dimensional (3D) porous polymers.¹³ Therefore, it is critical to prevent this assembly process to obtain 2D organic nanosheets. Although a recent study attempted to create a thin layer of an organic framework on a solid surface,¹⁵ the synthesis of free-standing nanosheets by the separation of one 2D framework from another has yet to be achieved due to the strong interlayer forces. In general, 2D covalent frameworks are synthesized via the condensation or coupling of different rigid monomers with certain functional groups.¹⁶–¹⁸ Based on retrosynthetic thinking, the covalent framework can be split or functionalized by reaction with small molecules, especially for those frameworks linked by C–O or C–N bonds. Theoretically, it should be possible to peel away a thin layer of 2D covalent framework from a stacked 3D system to
generate novel functionalized organic nanosheets. Using this hypothesis, we have devised a unique synthesis of free-standing mesoscopic organic nanosheets.

Recently, we have synthesized a novel microporous polyisocyanurate (PICU-A) material by the cyclotrimerization of 3, 3′-dimethoxy-4, 4′--biphenylene diisocyanate (A) over an N-heterocyclic carbene (NHC) catalyst.19 PICU was built from a 2D covalent framework. Due to the irreversible reaction involved, PICU is an amorphous material with many terminal groups.19 These defects in the stacked layered structure made PICU a good candidate for functionalization to derive nano-sheets. In general, defects or terminal groups were more active towards reaction with small molecules. To derive different organic nanosheets, fluorene-based PICU-B was synthesized (Scheme 1).

Firstly, 3-aminopropanol was reacted with the terminal isocyanate (–NCO) group of PICU (Scheme 1). Typically, 10 mg of PICU-A and 0.2 mmol of 3-aminopropanol were added to a reaction vial containing 10 mL of N,N′-dimethylformamide (DMF). The vial was capped and heated at 100 °C for 24–72 h with stirring. The PICU-A suspension was converted to a brown solution (Figs 1A and B). After filtration, the NS-Aa obtained was precipitated and washed with diethyl ether.

The NS-Aa solid could be re-dissolved in methanol or DMF. However, it was nearly insoluble in water. To improve the solubility of the nanosheets in water, \textit{o}-(2-aminoethyl)polyethylene glycol (PEG–NH\textsubscript{2}) and \textit{d}-glucosamine were used to synthesize nanosheets NS-Ab and NS-Ac, respectively. Similarly, NS-Ba and NS-Bb were prepared from PICU-B. NS-Ab was slightly soluble in water (<20 µg mL−1), and the solubility of NS-Bb in water was even lower. In contrast, the glucosamine1-modified nanosheets NS-Ac showed good solubility in water (up to 2 mg mL−1) (Fig. 1C).

The transmission electron microscopy (TEM) image shows the well-defined nanosheets of NS-Aa, NS-Ba and NS-Bb (Fig. 2). The size of the 3-aminopropanol-functionalized NS-Aa1 nanosheets (reacted at 100 °C for 24 h) was in the range 70–150 nm (Fig. 2b), while the size of NS-Aa2 nanosheet (reacted at 100 °C for 48 h) was only 40–80 nm (Fig. 2c). The NS-Aa3 nanosheet (reacted at 100 °C for 72 h) was even smaller in size and irregular in shape (Fig. 2d). The nanosheets of 3-aminopropanol-functionalized NS-Ba1 and PEG-functionalized NS-Bb1 (both reacted at 100 °C for 24 h) are shown in Figs 2f and g, respectively. Fig. 2h shows that the nanosheets are amorphous, as is their polymer precursor. The nanosheets were derived from the reaction between the modification reagent R′–NH\textsubscript{2} and the terminal isocyanate (–NCO) group of PICU (Scheme 1). Given the short-range order in PICU, there were plenty of active terminal groups in the stacked layered structure. As a sufficient amount of modification reagents was attached to a piece of layered polymer, the surface layer(s) could be peeled off from the bulk polymeric particles to form nanosheets. The nanosheets could further react with R′–NH\textsubscript{2}, and be peeled into thinner sheets or split into smaller pieces over a longer reaction period (Fig. 2). The atomic force microscopy (AFM) image (Fig. 3) also confirmed the nanosheet structure. Typically, the thickness of the nanosheets was ≤ 3 nm.

NS-Aa and NS-Ba showed very weak absorption in the visible range (Fig. S5A, ESI†). NS-Ac exhibited a blue fluorescence emission peak at 470 nm in water when excited at 365 nm (Fig.
1D), while NS-Ba only showed a very weak emission peak at 430 nm (Fig. S5B, ESI†). The blue fluorescent NS-Ac nanosheets could be used as a novel bioimaging agent. The application of water-soluble NS-Ac in biological systems was examined by confocal laser scanning microscopy (CLSM). After KB (human nasopharyngeal epidermal carcinoma) cells and RAW 264.7 (mouse leukemic monocyte macrophage) cells were incubated in a phosphate buffered saline (PBS) solution (pH = 7) with 30 µg mL\(^{-1}\) of NS-Ac at 25 °C for 24 h, a blue luminescence was observed in the cytoplasm of these living cells (Fig. S6, ESI†), demonstrating the use of organic nanosheets in bioimaging applications.

Inspired by the aforementioned study, we further examined the possibility of using NS-Ac nanosheets as nanocarriers for delivering hydrophobic molecules into living cells. 7-diethylamino-3,4-benzophenoxazine-2-one (Nile red) was used as a hydrophobic probe in this test. RAW 264.7 cells were incubated in a PBS solution (pH = 7) with an aqueous solution of Nile red/NS-Ac or with a control (aqueous solution of Nile red) at 25 °C for 6 h. CLSM images showed a bright red luminescence in the cytoplasm of the live RAW 264.7 cells incubated with Nile red/NS-Ac (Fig. 4a). In contrast, there was negligible luminescence in the RAW 264.7 cells incubated with Nile red only (Fig. 4b). This result clearly demonstrated that the NS-Ac nanosheets acted as carriers for the Nile red molecules and delivered them into the live cells. This was made possible by the non-covalent van der Waals interactions between the organic nanosheets and the guest hydrophobic molecules.

We assessed the cytotoxicity of NS-Ac on HepG2 and KB KB cells using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) based assay. The nanosheets exhibited a very low cytotoxicity (IC50 >> 100 µg mL\(^{-1}\)) in HepG2 (human liver carcinoma) and KB cells (Figs 5A and B). 6.25–100 µg mL\(^{-1}\) of NS-Ac showed a limited inhibitory effect on the proliferation of HepG2 cells cultured in Dulbecco’s Modified Eagle’s Medium (DMEM), and of KB cells cultured in Roswell Park Memorial Institute (RPMI) 1640. At a high concentration of 100 µg mL\(^{-1}\), NS-Ac only inhibited (i) HepG2 cell proliferation in 48 h by 1.5% with statistical significance, and (ii) KB cell proliferation in 48 h by 5.5% with statistical significance. In addition, NS-Ac was stable in water for at least 4 months.

In summary, novel mesoscopic (30–150 nm) organic nanosheets have been synthesized by functionalization of bulk polymeric materials with a 2D organic covalent framework. As glucosamine was used in the synthesis, water-soluble fluorescent nanosheets were achieved. The water-soluble organic nanosheets showed promising biological applications, for example, as nanocarriers to deliver hydrophobic molecules into living cells. The 2D structure, versatile functionalization and tunable size of these organic nanosheets are of interest for various applications. These unique materials are also attractive due to their low cost and ease of synthesis.

This work was supported by the Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore).
Notes and references

List of Schemes

Scheme 1 The synthesis of the PICU polymer and organic nanosheets.
List of Figures

Fig. 1 Photographs of (A) PICU-A suspended in DMF, (B) a DMF solution of nanosheets NS-Aa, and (C) an aqueous solution of nanosheets NS-Ac. (D) A photograph of an aqueous solution of NS-Ac under excitation at 365 nm.

Fig. 2 TEM images of (a) PICU-A, the nanosheets of (b) NS-Aa1, (c) NS-Aa2, (d) NS-Aa3, (e) PICU-B, (f) NS-Ba1 and (g) NS-Bb1. (h) The electron diffraction pattern of NS-Aa2.

Fig. 3 (A,B) AFM images of the nanosheets of NS-Aa2 on the silicon dioxide substrate. (C) The height profile of the nanosheet marked with a dashed line in (B).

Fig. 4 CLSM images of live RAW 264.7 cells incubated with (a) Nile red/NS-Ac and (b) Nile red at 25 °C for 6 h.

Fig. 5 The cytotoxicity of NS-Ac. (A) HepG2 cells were seeded at a density of 5000 cells per well in a 96-well plate and cultured for 24 h in DMEM. (B) KB cells were seeded at a density of 5000 cells per well in a 96-well plate and cultured for 24 h in RPMI 1640. Next, NS-Ac of various concentrations (0–100 µg mL⁻¹) in PBS was added in both cases and, after 48 h, the cells were assayed for proliferation. A TECAN Safire2 Multifunctional Microplate Reader was used for the profiling of the absorbance at a wavelength of 555 nm. The signal was normalized against vehicle treatment (0 µg mL⁻¹ of NS-Ac). Data were obtained from six independent experiments and presented as the mean and standard error of the mean (SEM).
Scheme 1

R^2NH_2 = (a) HC-CH_2-CH_2-NH_2, (b) PEG-NH_2, (c) glucosamine
Fig. 2
Fig. 5

Graph A: Cell Viability (%) vs. Concentration (µg/ml)

Graph B: Cell Viability (%) vs. Concentration (µg/ml)