<table>
<thead>
<tr>
<th>Title</th>
<th>Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wu, Shixin; Yin, Zongyou; He, Qiyuan; Lu, Gang; Zhou, Xiaozhu; Zhang, Hua</td>
</tr>
<tr>
<td>Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/8390</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Materials Chemistry, The Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1039/c0jm02267e.</td>
</tr>
</tbody>
</table>
Electrochemical deposition of Cl-doped n-type Cu$_2$O on reduced graphene oxide electrodes†

Shixin Wu, a Zongyou Yin, a Qiyuan He, a Gang Lu, a Xiaozhu Zhou a and Hua Zhang a,b

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX
DOI: 10.1039/b000000x

Reduced graphene oxide (rGO) electrodes can be applied for the electrochemical deposition of various semiconductor oxides. In this study, we demonstrate the electrochemical deposition of Cl-doped n-type Cu$_2$O (Cl–Cu$_2$O) on rGO electrodes. The structure and properties of the deposited Cl–Cu$_2$O have been investigated extensively. Moreover, the effect of Cl doping on the carrier concentration and photocurrent of Cl–Cu$_2$O has also been investigated. Our study shows significant implications in tailoring the properties of materials deposited on rGO electrodes by using electrochemical methods.

1. Introduction

Cuprous oxide (Cu$_2$O) is widely recognized as a p-type semiconductor oxide with a direct band gap of ca. 2.0 eV. As an abundant and nontoxic material with high solar absorbance, Cu$_2$O is promising for photovoltaic device applications. A number of methods have been applied to synthesize Cu$_2$O, including the sol–gel chemistry approach, various oxidation methods, chemical vapor deposition, and electrochemical deposition. Among them, the electrochemical method has attracted increasing interest due to its characteristics of low temperature, low cost and large scale production, and also its facility to control morphologies, compositions and other element doping for the deposited materials.

To date, extensive efforts have been tried to develop the solar cells based on the environmentally friendly material Cu$_2$O. However, the conversion efficiency of the fabricated solar cells is lower than 2%. One of the reasons for this is that it is difficult to prepare high quality n-type doped Cu$_2$O and construct Cu$_2$O p–n homojunctions. Doping through introduction of a new element has been commonly used as a feasible way to tailor the electrical properties of metal oxides. Although the pH value of solution was used to adjust the conduction type of Cu$_2$O, the resulting n-type Cu$_2$O showed high resistance of up to 108 Ω cm and poor performance in solar cell applications.

Graphene, as a rising star in materials science, has been used for various applications such as field effect transistors (FETs), and memories, due to its electronic properties. In particular, graphene shows great potential as a transparent electrode material to compete with indium tin oxide (ITO) and fluorine tin oxide (FTO) for applications in photovoltaic devices. In this study, by using the electrochemical method, we deposit high-quality n-type doped Cu$_2$O by introducing substitutional n-type dopant Cl on the reduced graphene oxide electrode (rGO), derived from chemical reduction of graphene oxide (GO). Our results suggest that the deposition conditions have a great impact on the carrier concentration and the light harvesting efficiency of Cl-doped Cu$_2$O.

2. Experimental

2.1 Materials

Natural graphite (SP-1, Bay Carbon, Bay City, MI, USA) was purchased for synthesis of graphite oxide. Concentrated sulfuric acid (98% H$_2$SO$_4$), phosphorus oxide (P$_2$O$_5$), potassium peroxodisulfate (K$_2$S$_2$O$_8$), potassium permanganate (KMnO$_4$), hydrogen peroxide (30% H$_2$O$_2$), 3-aminopropyltriethoxysilane (APTES), anhydrous hydrazine (98% N$_2$H$_4$), cupric chloride (CuCl$_2$), lactic acid and sodium hydroxide (NaOH) were purchased from Sigma-Aldrich (Milwaukee, WI, USA) and used as received. Si/SiO$_2$ was purchased from Bonda Technology Pte Ltd (Singapore). Ultrapure Milli-Q water (Milli-Q System, Millipore, Billerica, MA, USA) was used in all experiments.

2.2 Electrochemical deposition of Cl-doped Cu$_2$O (Cl–Cu$_2$O) on rGO electrodes

Graphene oxide (GO) in methanol solution was prepared according to the previous reports. GO films were obtained by spin-coating GO methanol solution (0.5 mg mL$^{-1}$) on
2.3 Characterization

X-ray diffraction (XRD) patterns were recorded using a X-ray diffractometer (Rigaku D/max 2250 V) using Cu Kz radiation (\(\lambda = 1.5406 \) A). Atomic force microscopy (AFM) image was obtained by using a Dimension 3100 (Veeco, CA, USA) with a Si tip (resonance frequency: 320 kHz; spring constant: 42 N m\(^{-1}\)) in tapping mode under ambient conditions (scanning rate: 1 Hz; scanning line: 512). Raman spectra were recorded with a WITec CRM200 confocal Raman microscopy system with an air cooling charge coupled device (CCD) as the detector (WITec Instruments Corp, Germany). The excitation wavelength was 488 nm. Scanning electron microscopy (SEM) images were obtained on a JEOL JSM-6340F field-emission scanning electron microanalyzer at an accelerating voltage of 5 kV. X-ray photoelectron spectroscopy (XPS) (AXIS ultra spectrometer, Kratos) spectra were collected with monochromatized Al Kz X-rays (1486.71 eV) and an operating power of 150 W (15 kV and 10 mA). Transmission electron microscope (TEM) images were acquired on a JEOL JEM-2100F transmission electron microscope with an accelerating voltage of 200 kV. The TEM samples were prepared as follows. After the Cl–Cu2O deposits, scratched with a needle, it was dispersed in water with sonication. 2 \(\mu L \) of this solution was dropped onto a copper grid. After the solution was dried, the sample was immediately used for TEM measurements. The Mott–Schottky (MS) plot was recorded by the electrochemical workstation using the ac impedance method. The measurement was conducted in a conventional three-electrode cell, using the rGO electrode with deposited Cl–Cu2O, a Pt grid as the working, reference and counter electrodes, respectively. The MS plots of Cl–Cu2O were measured in the electrolyte containing 0.1 M Na2HPO4 with the solution pH adjusted to 10 ± 0.2 with 4 M NaOH (amplitude of the ac potential: 5 mV, frequency: 1 kHz). The photocurrent measurements were conducted in a three-electrode electrochemical cell with a 150 W halogen lamp irradiating the working electrode (with an area of ca. 0.3 cm\(^2\)). The rGO electrode with deposited Cl–Cu2O, a standard saturated Ag/AgCl and a Pt wire were used as the working, reference and counter electrodes, respectively. The electrolyte contained 0.5 M Na2SO4.

3. Results and discussion

The electrochemical reactions involved in the synthesis can be expressed by two equations: 14 \(\text{Cu}^{2+} + e^{-} \rightarrow \text{Cu}^{+} \) and 2 \(\text{Cu}^{+} + 2\text{OH}^{-} \rightarrow \text{Cu}_{2}\text{O} + \text{H}_{2}\text{O} \). With the addition of CuCl2 into the electrolyte, another reaction is expected to occur: 16 \(\text{Cu}^{+} + \text{Cl}^{-} \rightarrow \text{CuCl} \). The expected electrochemical reaction and the limited solubility of CuCl induce the incorporation of Cl into Cu2O lattice. 16 Since the radius of Cl\(^{−}\) ions (1.8 A) is larger than that of O\(^{2−}\) ions (1.4 A), doping of Cl is usually substitutional.

A typical sample of n-type Cu2O was deposited on the rGO electrode, which was characterized by AFM, SEM and Raman (Fig. 1S in ESI†), in 10.67 mL electrolyte containing 0.3 M CuSO4, 4 M lactic acid, and 1 mmol CuCl2. The obtained product is referred to as Cl–Cu2O, and was fully characterized as discussed below. The XRD pattern (Fig. 1A) confirms the successful synthesis of Cu2O and no other phases were formed even with Cl doping, indicating the cubic crystal structure of Cl–Cu2O with space group of Pn3. 6 The narrow diffraction peaks suggest the good crystallinity of the electrodeposited Cl–Cu2O.

Fig. 1B displays the Raman spectrum of Cl–Cu2O deposited on rGO film. The strongest peak in the spectrum is from the SiO2 substrate, whose peak at 520 cm\(^{-1}\) was used as calibration. Peaks at 1360 and 1594 cm\(^{-1}\) belong to the D and G band of rGO electrodes, respectively. 31 Peaks at lower wavenumbers, 218, 306, 435 and 625 cm\(^{-1}\), correspond to the second-order overtones 2 \(\Gamma_{1}^{2} \), 2 \(\Gamma_{3}^{(1)} \), fourth-order overtone 4 \(\Gamma_{1}^{2} \), red-allowed mode \(\Gamma_{5}^{(2)} \) (TO) phonon vibration of crystalline Cu2O, 34 respectively. The peak at 980 cm\(^{-1}\) is most likely the overlapping peak of SiO2 substrate and the adsorbed sulfate species on Cu2O crystals since the electrolyte used for Cl–Cu2O deposition contained CuSO4. 35

Fig. 2A shows the SEM image of the Cl–Cu2O and the inset exhibits an enlarged view. Besides the micrometre sized crystals with typical (111) planes at the sides, multifaceted crystals nucleated on the pre-formed crystals are also observed. EDX spectrum (Fig. 2B) shows the elemental composition of Cl–Cu2O and confirms the incorporation of Cl into the synthesized Cu2O. The atomic concentration of Cl is estimated to be 2.1% from the EDX quantitative analysis. Moreover, the X-ray photoelectron spectrum (XPS) of the sample also confirmed the presence of Cl in the electrodeposited Cu2O (data not shown here). TEM image of a Cl–Cu2O crystal scratched from the electrodeposited Cl–Cu2O on the rGO electrode is shown in Fig. 2C. The selected area electron diffraction (SAED) pattern (inset in Fig. 2C) from the crystal displays clearly resolved diffraction dots, indicating the high crystallinity of the deposited Cl–Cu2O on the rGO electrode.

Fig. 1 (A) XRD pattern and (B) Raman spectrum of Cl–Cu2O deposited on rGO electrode.

APTES-modified SiO2 substrates at 4000 rpm, followed by reduction in hydrazine vapor at 60 °C overnight. The obtained rGO film was used as an electrode. The electrochemical deposition of Cl–Cu2O was performed using an electrochemical workstation (CHI600C, CH Instrument Inc., USA) using the reported method. 16 Briefly, the deposition was carried out in a three-electrode electrochemical cell. The rGO electrode, a Pt mesh, and a saturated calomel electrode (SCE) were used as the working, counter and reference electrodes, respectively. The 10.67 mL electrolyte contained 0.3 M CuSO4 and 4 M lactic acid. CuCl2, with its amount varying from 0 to 1.6 mmol, was added into the electrolyte for Cl doping. After that, 4 M NaOH was added into the electrolyte to adjust the pH value of the solution to 8.0 ± 0.2. The deposition used a potentiostatic process (potential of −0.4 V, charge density of 2 C cm\(^{-2}\)) at a temperature of 60 °C.
The conduction type and carrier concentration of Cl–Cu₂O were determined using Mott–Schottky (MS) measurements. The MS plot (Fig. 3A) of the sample shows a positive slope, which confirms the n-type semiconducting behavior of Cl–Cu₂O. The donor concentration calculated from the slope of the plot using the MS theory is about 1 x 10^20 cm⁻³ (6.3 is used as the dielectric constant of Cu₂O).

To study the effect of chlorine precursor (CuCl₂) on the carrier concentration of Cu₂O film, a series of samples were deposited in the electrolyte containing different CuCl₂ amounts. All the samples exhibited a positive slope in the MS plot and hence n-type semiconducting behavior. The change of doping concentration with the amount of CuCl₂ added into the solution is shown in Fig. 3B. Doping concentration increases slowly with addition of CuCl₂ until the amount of CuCl₂ is 1.0 mmol, after that the doping concentration decreases rapidly. Theoretically, Cl (group VII element), as a substitutional dopant for O (group VI element) site in Cu₂O, would contribute electrons to the crystal, hence increasing the electron (donor) concentration of Cu₂O.

However, in our experiments, when the amount of CuCl₂ exceeds 1.0 mmol, it becomes difficult to electrodeposit Cu₂O crystals. The amount of Cl–Cu₂O crystals on the rGO electrode deposited with the addition of 1.3 mmol CuCl₂ is much lower compared to those deposited with the addition of 0.3 and 1.0 mmol CuCl₂ (as shown in Fig. 4). This could be explained by the inhibition effect of Cl⁻ ions during the electrodeposition of Cu caused by the surface covered with almost insoluble CuCl. Moreover, kinetics and mechanisms of Cu deposition are changed with increased anodic exchange current density when the Cl⁻ ion concentration is above 8.45 x 10⁻⁴ M.

Fig. 5 displays the photocurrent measurements on three samples of Cl–Cu₂O deposited with different amounts of chlorine precursor. The measurements were conducted in a solution of 0.5 M Na₂SO₄ at an applied potential of −0.5 V (vs. Ag/AgCl). Anodic photocurrents, characteristics of n-type semiconducting material, were observed for all the samples. Clearly, Cl–Cu₂O deposited with the addition of 0.3 mmol (referred to as 0.3–Cl–Cu₂O) and 1.0 mmol CuCl₂ (referred to as 1.0–Cl–Cu₂O) shows much higher light-to-electrons/holes conversion efficiency, thus larger photocurrent, than that deposited with the addition of 1.3 mmol CuCl₂ (referred to as 1.3–Cl–Cu₂O). It is believed that the surface coverage of the deposited Cl–Cu₂O on the rGO electrode is the main factor that influences the light harvesting efficiency. Fig. 4 clearly shows that the surface coverage of 0.3–Cl–Cu₂O and 1.0–Cl–Cu₂O is larger than that of 1.3–Cl–Cu₂O. The slightly higher photocurrent from 1.0–Cl–Cu₂O, compared with 0.3–Cl–Cu₂O, can be attributed to the higher Cl-doping.
concentration in 1.0–Cl–Cu2O although the surface coverage of these two Cu2O crystals on rGO electrode is similar.

4. Conclusions

In summary, n-type Cu2O by Cl doping with carrier concentration of up to 1 × 1020 cm−3 has been electrodeposited on rGO electrodes. Through various characterizations, a comprehensive understanding about the structure and properties of the deposited Cl–Cu2O was obtained. Furthermore, the amount of chlorine precursor in the electrolyte has been found to have a direct impact on the surface coverage of deposited Cu2O crystals on the rGO electrode, subsequently affecting the Cl-doping concentration and light harvesting efficiency of Cl–Cu2O. Our study has explored rGO-based electrochemical synthesis and promises the potential for various future applications in optoelectronic devices based on rGO electrodes.

Acknowledgements

This work was supported by AcRF Tier 2 (ARC 10/10, No. MOE2010-T2-1-060) from MOE, A*STAR SERC Grant (No. 092 101 0064) from A*STAR, and the Centre for Biomimetic Sensor Science at NTU in Singapore.

Notes and references