<table>
<thead>
<tr>
<th>Title</th>
<th>Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Soo, Jianchow; Zhang, Jing; He, Qiyuan; Agarwal, Shuchi; Li, Hai; Zhang, Hua; Chen, Peng</td>
</tr>
<tr>
<td>Citation</td>
<td>Soo, J. C., Zhang, J., He, Q., Agarwal, S., Li, H., Zhang, H., et al. (2010). Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. Integrative Biology, 2, 250–257.</td>
</tr>
<tr>
<td>Date</td>
<td>2010</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/8406</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2010 The Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Integrative Biology, The Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: http://dx.doi.org/10.1039/c0ib00006j.</td>
</tr>
</tbody>
</table>
Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis†

Jian-Chow Soo,a Jing Zhang,a Qiyuan He,b Shuchi Agarwal,a Hai Li,b Hua Zhang*b and Peng Chen*a

Received 12th February 2010, Accepted 29th March 2010
First published as an Advance Article on the web 30th April 2010
DOI: 10.1039/c0ib00006j

The subunit B of cholera toxin (CTB), which specifically binds with ganglioside GM1 enriched in membrane lipid rafts, is known to interfere with multiple cell functions. However, the specific, stable and spatially defined membrane signaling induced by CTB binding is often difficult to investigate by applying CTB molecules in bulk solution due to quick internalization, elicited intracellular reactions, and homogeneous interaction with the entire cell membrane. Here, we interfaced the neuroendocrine PC12 cells with surface immobilized and patterned CTB molecules, and interrogated the effects of CTB binding on vesicular exocytosis using integrative single-cell study methods. It was discovered that CTB binding facilitates vesicle trafficking, docking and exocytosis in a cholesterol dependent manner. And these effects are probably attributable to the increased membrane GM1 and cholesterol, and enhanced Ca2+ signaling.

1 Introduction

The subunit B of cholera toxin (CTB) specifically binds to gangliosides on the cell membrane, particularly to monosialo-tetrahexosylganglioside (GM1) with high affinity.1 GM1 is predominately clustered in lipid rafts which are believed to be relay points for various cellular signaling events by selectively recruiting certain proteins or lipids while excluding others.1,2 Upon binding with GM1, CTB is quickly endocytosed and enters a retrograde trafficking pathway through endosomes to the Golgi apparatus.3 In addition to triggering endocytosis,4 crosslinking between GM1 and CTB can elicit other cellular responses, e.g., enrichment of β1 integrins in lipid rafts,5 increase or inhibition of cell proliferation,6–8 increase of cytoplasmic free Ca2+,9,10 inhibition of T cells activation,8 phosphorylation of various signaling molecules.11 As endocytosis and exocytosis are intimately linked12 and GM1 enriched lipid rafts are critically involved in docking and exocytosis of secretory vesicles,13,14 we conceive that CTB binding on the cell surface may modulate the exocytotic pathways.

Despite that CTB has been widely used as an instrumental membrane probe with multiple-engagement of cell functions, elucidation of the molecular transductions induced by cross-linking between GM1 and CTB is inevitably complicated by several problems. Firstly, CTB molecules are rapidly internalized after binding due to triggered endocytosis. Thus, the effects induced by stable interaction of CTB with the cell membrane cannot be examined. In addition, trace contamination of the subunit A of cholera toxin (CTA) in the commercially prepared CTB samples will be uptaken into the cells and potently trigger cAMP pathways by activating adenylate cyclase. Some of the reported CTB effects can be attributed to the influences of CTA.15 Furthermore, when membrane probes are applied uniformly in the bulk aqueous solution, it is not possible to investigate the effects due to their localized interaction with heterogeneous membrane domains. To avoid these problems, we studied the effects of surface immobilized CTB on vesicle docking, trafficking and
exocytosis of neuroendocrine PC12 cells using integrative approaches including surface functionalization, micro-contact printing, total internal reflection fluorescence microscopy (TIRFM), amperometric detection of exocytosis using carbon fiber microelectrodes, and single cell photometry.

2 Results

2.1 Surface functionalization and micro-contact printing

As illustrated in Fig. 1a, CTB molecules were immobilized onto a glass coverslip through a series of functionalization steps. The glass coverslip was first silanized with 3-aminopropyltriethoxysilane (APTES) which reacts with hydroxyl groups on the surface. The silanized coverslip was then covalently modified with glutaraldehyde (GA) which, in turn, reacts with the primary amine group on CTB to form the covalent linkage. The success and uniformity of CTB conjugation were confirmed by the binding of green fluorescent BODIPY® FL C5-GM1 (BODIPY-GM1) as shown in Fig. 1b.

The CTB coated surface which interfaces with the entire membrane of the adherent cell ensures the stable and homogeneous transmembrane signaling triggered by the crosslinking of CTB with GM1. To elucidate the spatially heterogeneous signaling, micro-patterns of CTB molecules were non-covalently created on the surface by micro-contact printing as schematically shown in Fig. 2a. Red fluorescent Alexa Fluor® 594 conjugated CTB (CTB-594) was printed on a poly-l-lysine (PLL) coated glass coverslip using a PDMS stamp to produce line patterns with the nominal width and spacing distance of 2 μm. As shown in Fig. 2b, BODIPY-GM1 selectively binds to the CTB patterns but not to the PLL patterns between the CTB-594 micro-lines, indicating the effectiveness of micro-contact printing and the preserved functionality of immobilized CTB-594. The scale bars = 5 μm.

2.2 Surface immobilized CTB does not affect cell morphology, proliferation and adhesion

The chemical properties of the cell growth substrate could cause alterations in morphology, proliferation and adhesion of the cells, which, in turn, may profoundly affect cell functions in intricate ways. To assess the CTB effects on these phenotypes of PC12 cells, we have compared the surface coating of CTB with the coating of PLL which is a cell adhesion promoting poly-peptide commonly used for cell culturing. As shown in Fig. 3a (left), cells can grow well on the coverslips which were covalently and uniformly decorated by CTB molecules. The morphology of PC12 cells grown on the CTB substrates appeared normal and was indistinguishable to that of the cells cultured in parallel on the PLL coated substrates. In addition, the rate of cell proliferation was nearly identical on both types of substrates (Fig. 3b). When cells grew on the substrates with alternating CTB and PLL micro-patterns, the cells did not exhibit any preference to either pattern. In other words, cells spread across the two kinds of patterns, and orientation or polarization of the cell body correlated with the orientation of the patterns was not observed (Fig. 3c). Vinculin, a protein which links the actin cytoskeleton to the
transmembrane adhesion molecule integrin in focal adhesion plaques, was fluorescently stained to indicate the focal adhesion points of the cells. As seen in Fig. 3c, the focal points were not preferentially colocalized with either pattern, indicating that CTB and PLL similarly facilitate cell adhesion. Consistently, the distributions of focal adhesion points of the cells on the substrates with homogeneous CTB or PLL coatings were similar (data not shown).

2.3 Immobilized CTB facilitates vesicle docking and trafficking in a cholesterol dependent manner

Exocytosis of hormones, neurotransmitters or other signaling molecules is a dynamic process highly regulated by the combined actions of various proteins and lipids. The exocytotic process involves sequential steps of secretory vesicles, including their arrival to the subplasmalemmal region, docking and priming to become readily releasable, and final fusion with plasma membrane upon triggering. The recently emerged total internal reflection fluorescence microscopy (TIRFM), which evanescently and selectively illuminate the thin subplasmalemmal region (<200 nm thick) just above the interface between the coverslip and the cell membrane (Fig. 4a, left top), is instrumental in revealing the vesicle dynamics near the cell membrane. The large dense core vesicles (LDCV) inside PC12 cells were enlightened by overexpressing EGFP tagged neuropeptide Y (NPY-EGFP) which is a specific LDCV marker. The fluorescently labeled secretory vesicles in the subplasmalemmal region can be individually resolved under TIRFM. Fig. 4a (right) presents a typical TIRFM image of a PC12 cell grown on the CTB functionalized coverslip. As revealed by TIRFM
studies, secretory vesicles undertake constant lateral movement (parallel to the cell membrane) and vertical movement (transition between inner cytosol and subplasmalemmal region). The trafficking dynamics of the secretory vesicles are highly relevant to the vesicle fusion competence and exocytotic kinetics. The LDCV vesicles in PC12 cells were individually tracked at 2 Hz for 2 min to obtain the trajectory of their lateral movement, diffusion constant, motion area, and the vertical transport. Fig. 4a (left bottom) depicts a typical trajectory of a vesicle’s lateral movement, whose coverage area can be approximated by the rectangular region that just encases all the vesicle footprints.

Vesicles constantly arrive from the inner cytosol to the subplasmalemmal region and retreat back after some dwell time. However, the total number of the subplasmalemmal vesicles stays nearly constant as the arrival and retrieval rates are balanced. It was found that the mean total number of the subplasmalemmal vesicles in the cells grown on CTB coated coverslips was significantly greater than that in the cells on PLL coated coverslips, implying that CTB interaction facilitates vesicle docking (Fig. 4b). In addition, CTB coating enhanced the vertical trafficking as evidenced by the increase in vesicle arrival from the inner cytosol (Fig. 4c) and enhanced the lateral motion as evidenced by the increased average diffusion constant (Fig. 4d) and motion coverage area (Fig. 4e).

GM1 is largely clustered in cholesterol rich membrane domains (lipid rafts). It has been found that methyl-[β]-cyclodextrin (MβCD), a cholesterol extracting agent which disrupts lipid rafts, diminishes the clustering of GM1 on the cell membrane and impairs CTB binding to the lipid rafts. Here, we found that MβCD treatment (incubation with 5 mM MβCD for 30 min at 37 °C) completely abolished the CTB effects on vesicle docking and trafficking (Fig. 4), indicating that the observed CTB effects are cholesterol dependent. Membrane cholesterol was removed by 37.04 ± 2.57% (3 independent experiments) after MβCD treatment (measured by Amplex Red Cholesterol Assay Kit from Invitrogen).

The facilitating roles of CTB on vesicle docking and trafficking were corroborated by the TIRFM experiments on cells grown on dual micropatterns of CTB and PLL. As shown in Fig. 5a and b, more vesicles were localized on the CTB patterns rather than on the PLL patterns. Consistent with the results demonstrated in Fig. 4, vesicles on the CTB patterns exhibited enhanced vertical and lateral trafficking, and cholesterol depletion by MβCD completely eliminated the facilitating effects of the CTB patterns (Fig. 5). Deprivation of membrane cholesterol by culturing the cells in the lipid-protein deficient serum (LPDS, Sigma) for 5 days gave similar results as MβCD treatment (Fig. S1 in ESI†).

2.4 Immobilized CTBs enhance vesicular exocytosis in a cholesterol dependent manner

As the interaction between the cell membrane and the surface immobilized CTB molecules promotes vesicle docking and trafficking, it is thus likely that it would promote vesicular exocytosis. Single-cell amperometric measurement based on a carbon-fiber-microelectrode (Fig. 6a), which is able to electrochemically detect single vesicle release of catecholamine molecules from PC12 cells, was employed to test this hypothesis. Fig. 6 presents amperometric recordings from a cell on a PLL coated surface and from a cell on a CTB coated surface in response to administration of high K⁺ solution by an application pipette. High K⁺ solution induces Ca²⁺ influx which, in turn, triggers vesicular exocytosis. Each amperometric current spike corresponds to single vesicle release of catecholamines.
As demonstrated in Fig. 6a and b, the extent of exocytosis was significantly augmented when the cells grew on CTB substrates as compared to those grown on PLL substrates. Such increase in the frequency of exocytotic response is likely attributable, at least in part, to the enhanced vesicle docking and trafficking (Fig. 4 and 5). The total charge (quantal size) of each amperometric spike, which reflects the total number of released molecules, was also significantly increased by CTB coating (Fig. 6c and d). The CTB-enhanced quantal vesicle release was completely abolished by deprivation of membrane cholesterol using MβCD.

Interestingly, although crosslinking of CTB occurs only at the adherent cell membrane, the enhanced vesicular exocytosis was detected by the carbon fiber electrode on the upper cell membrane. It implies that local crosslinking induces global effects.

2.5 CTB effects may be attributable to increase of GM1, cholesterol and Ca^{2+} signaling

Fig. 7a demonstrates that the stable interaction between the surface immobilized CTB molecules and the adherent cell membrane resulted in a drastic increase of overall membrane GM1 which was reported by the increased fluorescence staining of membrane GM1 by Alexa Fluor® 488 conjugated CTB molecules (CTB-488). GM1 molecules are segregated in the cholesterol enriched membrane domains that are believed to serve as the functional domains for vesicular exocytosis. Interestingly, increase of GM1 induced by CTB was accompanied by increase of membrane cholesterol which was assayed using the increased fluorescence staining with filipin. Therefore, it is conceivable that CTB binding to GM1 on the adherent membrane leads to overall increase of GM1-cholesterol enriched functional domains, and thus enhances vesicle docking, trafficking and exocytosis.

We measured the basal intracellular Ca^{2+} concentration and its increase upon high K^{+} stimulation which excites the cell membrane and induces Ca^{2+} influx through voltage gated Ca^{2+} channels, using single cell Ca^{2+} ratiometric photometry. As demonstrated in Fig. 7c, the basal Ca^{2+} level was higher in the cells grown on CTB substrates as compared to that in the cells grown on PLL substrates. In addition, the elicited Ca^{2+} signal by high K^{+} solution was stronger in the cells on the CTB substrates. It has been shown that application of CTB in the aqueous phase leads to Ca^{2+} influx through voltage gated Ca^{2+} channels which are likely intrinsically modulated by GM1. Our observation is consistent with the previous findings and suggests that the enhanced Ca^{2+} signaling is achieved through transmembrane signaling of CTB binding instead of through formation of CTB channels or through intracellular signaling triggered by internalized CTB molecules. The CTB facilitated Ca^{2+} signal likely in part accounts for the enhanced Ca^{2+} dependent vesicular exocytosis in PC12 cells.
Membrane signaling is conventionally studied by applying membrane probes to bulk solution. Stable, long-term, and specific effects induced by the binding probes, however, are often difficult to be examined as the probes may be quickly internalized into the cells due to triggered endocytosis or constant constitutive membrane turnover. Once internalized, the probes may trigger additional intracellular reactions. In addition, some membrane probes require organic solvent, e.g. DMSO, as a vehicle which may affect cell behaviors. Furthermore, homogenous aqueous application of membrane probes does not allow investigation of the spatial regulation of membrane signaling. Here, we demonstrated that surface immobilized membrane probes, with possibility of engineered micro/nano patterns, provide a novel alternative to study membrane signaling. Using this strategy and the integrative functional study platform at single cell level, we discovered that membrane binding of CTB, which is known to trigger endocytosis, modulates vesicular exocytosis which is intimately linked with endocytosis to ensure balanced membrane turnover. 12

3 Discussion

Membrane signaling is conventionally studied by applying membrane probes to bulk solution. Stable, long-term, and specific effects induced by the binding probes, however, are often difficult to be examined as the probes may be quickly internalized into the cells due to triggered endocytosis or constant constitutive membrane turnover. Once internalized, the probes may trigger additional intracellular reactions. In addition, some membrane probes require organic solvent, e.g. DMSO, as a vehicle which may affect cell behaviors. Furthermore, homogenous aqueous application of membrane probes does not allow investigation of the spatial regulation of membrane signaling. Here, we demonstrated that surface immobilized membrane probes, with possibility of engineered micro/nano patterns, provide a novel alternative to study membrane signaling. Using this strategy and the integrative functional study platform at single cell level, we discovered that membrane binding of CTB, which is known to trigger endocytosis, modulates vesicular exocytosis which is intimately linked with endocytosis to ensure balanced membrane turnover. 12

Gangliosides, particularly GM1 with which CTB binds with high affinity, are critical membrane lipid species involved in micro-organization of cell membrane and various cellular processes via interactions with other membrane lipids and membrane proteins such as ion channels, receptors, and membrane associating kinases. 29-31 Crosslinking of CTB with GM1 is known to elicit multiple cellular signaling. 11,32 In this study, it was found that CTB binding facilitates vesicle docking, trafficking and exocytosis in a cholesterol dependent manner. This study implies the important involvement of GM1 in exocytosis, and lends further support to the widely recognized notion that GM1-cholesterol enriched membrane microdomains (lipid rafts) play critical roles in spatially defined vesicle docking and trafficking, and final vesicle fusion. 13,14

GM1 and cholesterol enriched lipid rafts recruit secretory proteins such as SNARE proteins and are believed to serve as vesicle docking and fusion sites. Disruption of lipid rafts by depleting membrane cholesterol impairs vesicle docking, trafficking and exocytosis. 15,33 As membrane molecules and structures are highly mobile within the lipid bilayer, the CTB patterns underlying the cell membrane presumably recruit GM1 and GM1 associated membrane structures, creating GM1 patterns on the cell membrane. Consistent with the raft theory, we show that secretory vesicles preferentially colocalize with CTB patterns (thus GM1 patterns on the cell membrane) with enhanced trafficking in a cholesterol dependent way, indicating the preferential interactions between the vesicles and the GM1-cholesterol enriched functional domains.

The exact molecular mechanisms underlying the CTB enhanced exocytosis require further investigations. It is conceivable that the interaction between the adherent membrane and immobilized CTB molecules increases the number of GM1-cholesterol enriched functional domains on the entire cell membrane based on the observations that both membrane GM1 and cholesterol were increased and that increased exocytosis was detected on the non-adherent upper membrane. And as vesicle docking, the kinetics and extent of exocytosis, quantal vesicle fusion, and replenishment of releasable vesicles are Ca\(^{2+}\) dependent, 34 the CTB induced Ca\(^{2+}\) signal may be partly responsible for the observed facilitation of vesicle docking, trafficking and exocytosis. Furthermore, gangliosides are known to interact and inhibit exocytosis promoting enzymes such as protein kinase C 35 and phospholipase C. 36 Binding of CTB may relieve such inhibitions and consequently facilitates exocytosis.

Using immobilized CTB molecules as the probes can avoid effects that are not directly caused by membrane binding of CTB with GM1, and make it possible to reveal phenomena that are exclusive when membrane binding of CTB is only transient.

We showed that immobilized CTB did not affect the morphology, proliferation, and focal adhesion of PC12 cells. Such phenotypes may directly or indirectly influence exocytosis. For example, it was reported that cell adhesion is directly involved in spatial regulation of vesicle exocytosis. 37 Therefore, it is likely that the observed CTB effects are directly and specifically related to membrane binding of CTB. In contrast to effects induced by immobilized CTB, applying CTB molecules in the solution did not cause enhanced vesicle docking or trafficking (Fig. S2 in ESI†) or increase vesicle exocytosis (Fig. S3 in ESI†). Also in contrast to our observations, it has been shown that applying CTB molecules in the
solution promotes cell proliferation of 3T3 fibroblasts10 and neuritogenesis of PC12 cells.15 The discrepancy between the effects induced by immobilized and dissolved CTB molecules may be attributable to the transient binding of CTB due to internalization, or intracellular reactions caused by internalized CTB molecules or CTA contaminants. Clearly, immobilizing CTB is a novel or better alternative to interrogate the functions of GM1.

Surface functionalization and patterning have been utilized to study how cell anchoring affects cell proliferation, migration, polarization and differentiation.38–41 Our study postulates that surface immobilized and patterned probes can be used to study membrane signaling mediated by membrane functional domains. Using patterning techniques such as dip-pen lithography,42–44 chemically functionalized nanopatterns with various geometries (e.g., dots, meshes) can be readily created. With appropriate chemistry, membrane probes targeting on other membrane lipid species or membrane proteins can be attached to the surface. This strategy promises many applications that would be instrumental to fundamental biology.

4 Materials and methods

4.1 Covalent functionalization

Glass coverslips were cleaned in piranha solution, and repetitively washed with ethanol and DI water followed by blow drying with nitrogen. The cleaned coverslips were then silanized by soaking in 5% 3-aminopropyltriethoxysilane (APTES, Sigma) in ethanol for 1 h with agitation. The silanized coverslips were vigorously washed with ethanol and heated at 120 °C for 1 h. Subsequently, the coverslips were treated with 5% glutaraldehyde in water for 1 h followed by repetitive washing with DI water. Cholera toxin subunit B (CTB, Sigma) was dissolved (100 μg ml-1) in phosphate buffered saline (PBS) titrated to pH 9.0. The coverslips were incubated with the CTB solution for 6 h to allow crosslinking, followed by extensive washing with DI water to remove CTB residues. The whole process was conducted in a sterile environment.

4.2 Micro-contact printing

Silicon masters with line trenches (with width and spacing distance of 2 μm) were fabricated by photolithography and silanized with octadecyltrichlorosilane (OTS) to facilitate the releasing of PDMS stamps. PDMS stamps were made by casting Sylgard 184 (Dow Corning) on the silicon masters followed by curing at 70 °C overnight. The elastomeric stamps bearing the negative pattern of the masters were peeled off from the masters, washed with ethanol, and dried under nitrogen.

Sterilized coverslips were incubated in 0.01% poly-l-lysine (PLL, Sigma) aqueous solution for 1 h, followed by rinsing with DI water and drying with nitrogen. One drop of CTB or Alexa Fluor56 594 conjugated CTB (100 μg ml-1 in PBS, Invitrogen) was pipetted onto the PDMS stamp (pre-sterilized with 70% ethanol) to ensure full coverage of the stamp. After inking for 30 min, the stamp was washed with DI water and blown with a mild stream of nitrogen. It was then brought into contact with the PLL coated coverslip for 1 min. The coverslip with contact-printed proteins was finally rinsed with DI water and dried with nitrogen.

4.3 Cell culture and solutions

PC12 cells (American Type Culture Collection) were cultured in Advanced RPMI medium 1640 (Gibco) supplemented with 5% (v/v) heat-inactivated horse serum (Gibco), 10% heat inactivated fetal bovine serum (Gibco), and 1% penicillin-streptomycin (Gibco), and incubated at 37 °C in 5% CO\textsubscript{2}/air. Cells were planted on the functionalized coverslips 3–4 days before the experiments. The bath solution used for imaging and recording contained (in mM, titrated to pH 7.2): 150 NaCl, 2.4 KCl, 2 MgCl\textsubscript{2}, 2 CaCl\textsubscript{2}, 10 glucose and 10 HEPES. High K+ solution to stimulate Ca2+ influx and exocytosis contained (in mM, titrated to pH 7.2): 40 NaCl, 105 KCl, 1 MgCl\textsubscript{2}, 6 CaCl\textsubscript{2} and 10 HEPES.

4.4 Imaging focal adhesion

PC12 cells were fixed in 3.7% (w/v) formaldehyde (Sigma) in PBS for 20 min and permeabilized with 0.1% Triton X-100 (Sigma) in PBS for 10 min. Non-specific binding sites were blocked with 1.5% Bovine Serum Albumin (BSA, Sigma) in PBS for 1 h. Focal adhesion complexes were stained with FITC conjugated mouse monoclonal anti-vinculin antibodies in PBS (40 μg ml-1, Sigma) for 40 min and subsequently imaged by a LSM510 Meta confocal laser scanning microscope equipped with 63× oil-immersion objective (1.4 NA) (Carl Zeiss).

4.5 Total internal reflection fluorescence microscopy (TIRFM)

PC12 cells were transfected with NPY-EGFP plasmid (a kind gift from Dr Wollhard Almers, Vollum Institute, Oregon Health & Science University) to label large dense core vesicles (LDCV) using FuGENE 6 Transfection Reagent (Roche Diagnostics GmbH), 1–2 days before being imaged by an inverted TIRFM microscope (Axiovert200, Carl Zeiss) equipped with a 100× oil-immersed objective (1.45 NA), EMCCD camera, and a 488 nm laser excitation. Time-lapse images were taken at 2 Hz and the motion of individual vesicles was tracked using ImageJ (National Institute of Health, Wayne Rasband) and analyzed by Igor (WaveMetrics) routines.20 The diffusion constant of vesicle lateral motion was calculated as previously reported.45

4.6 Amperometric measurement

A 5 μm carbon fiber electrode (ALA Scientific Instruments) was biased at 700 mV and held closely adjacent to the cell membrane for amperometric recording by an EPC-10 double patch-clamp amplifier (HEKA Electronik) while exocytosis was stimulated by superfusion of high K+ solution via an application micropipette. The amperometric signals were sampled at 4 kHz and filtered at 1 kHz, and analyzed by an Igor program, Amperometric Spike Analysis 8.15, developed by Dr Eugene Mosharov at Columbia University. Only spikes with amplitude greater than 2 pA (10 times that of background noise) were considered as true signals and used for analysis.
4.7 Single cell photometry

A photometry system (TILL Photonics, GmbH) was used to assess the GM1 and cholesterol content on the cell membrane and the intracellular Ca\(^{2+}\) concentration. The fluorescent probes were excited at desired wavelength using a monochromator and the emission fluorescence was collected by a photodiode.

To assess membrane GM1, PC12 cells were fixed and stained with Alexa Fluor\(^{®}\) 488 conjugated CTB (1 \(\mu\)g ml\(^{-1}\) in PBS, Invitrogen) followed by extensive washing with PBS. The fluorescent CTB was excited at 488 nm. For measuring membrane cholesterol, PC12 cells were fixed and stained with filipin (0.05 mg ml\(^{-1}\) in PBS, Sigma) and washed with PBS. Filipin was excited at 340 nm. The emitted fluorescence intensity was subtracted from background intensity to indicate the amount of GM1 or cholesterol on the cell membrane.

For Ca\(^{2+}\) imaging, PC12 cells were first incubated with a M membrane permeable Ca\(^{2+}\) dye, Fura2 acetoxymethyl ester (Fura2-AM, Molecular Probes), in a serum-free photodiode.

4.7 Single cell photometry

A photometry system (TILL Photonics, GmbH) was used to assess the GM1 and cholesterol content on the cell membrane and the intracellular Ca\(^{2+}\) concentration. The fluorescent probes were excited at desired wavelength using a monochromator and the emission fluorescence was collected by a photodiode.

To assess membrane GM1, PC12 cells were fixed and stained with Alexa Fluor\(^{®}\) 488 conjugated CTB (1 \(\mu\)g ml\(^{-1}\) in PBS, Invitrogen) followed by extensive washing with PBS. The fluorescent CTB was excited at 488 nm. For measuring membrane cholesterol, PC12 cells were fixed and stained with filipin (0.05 mg ml\(^{-1}\) in PBS, Sigma) and washed with PBS. Filipin was excited at 340 nm. The emitted fluorescence intensity was subtracted from background intensity to indicate the amount of GM1 or cholesterol on the cell membrane.

For Ca\(^{2+}\) imaging, PC12 cells were first incubated with a M membrane permeable Ca\(^{2+}\) dye, Fura2 acetoxymethyl ester (Fura2-AM, Molecular Probes), in a serum-free photodiode.

4.7 Single cell photometry

A photometry system (TILL Photonics, GmbH) was used to assess the GM1 and cholesterol content on the cell membrane and the intracellular Ca\(^{2+}\) concentration. The fluorescent probes were excited at desired wavelength using a monochromator and the emission fluorescence was collected by a photodiode.

To assess membrane GM1, PC12 cells were fixed and stained with Alexa Fluor\(^{®}\) 488 conjugated CTB (1 \(\mu\)g ml\(^{-1}\) in PBS, Invitrogen) followed by extensive washing with PBS. The fluorescent CTB was excited at 488 nm. For measuring membrane cholesterol, PC12 cells were fixed and stained with filipin (0.05 mg ml\(^{-1}\) in PBS, Sigma) and washed with PBS. Filipin was excited at 340 nm. The emitted fluorescence intensity was subtracted from background intensity to indicate the amount of GM1 or cholesterol on the cell membrane.

For Ca\(^{2+}\) imaging, PC12 cells were first incubated with a M membrane permeable Ca\(^{2+}\) dye, Fura2 acetoxymethyl ester (Fura2-AM, Molecular Probes), in a serum-free photodiode.

4.7 Single cell photometry

A photometry system (TILL Photonics, GmbH) was used to assess the GM1 and cholesterol content on the cell membrane and the intracellular Ca\(^{2+}\) concentration. The fluorescent probes were excited at desired wavelength using a monochromator and the emission fluorescence was collected by a photodiode.

To assess membrane GM1, PC12 cells were fixed and stained with Alexa Fluor\(^{®}\) 488 conjugated CTB (1 \(\mu\)g ml\(^{-1}\) in PBS, Invitrogen) followed by extensive washing with PBS. The fluorescent CTB was excited at 488 nm. For measuring membrane cholesterol, PC12 cells were fixed and stained with filipin (0.05 mg ml\(^{-1}\) in PBS, Sigma) and washed with PBS. Filipin was excited at 340 nm. The emitted fluorescence intensity was subtracted from background intensity to indicate the amount of GM1 or cholesterol on the cell membrane.

For Ca\(^{2+}\) imaging, PC12 cells were first incubated with a M membrane permeable Ca\(^{2+}\) dye, Fura2 acetoxymethyl ester (Fura2-AM, Molecular Probes), in a serum-free photodiode.

4.7 Single cell photometry

A photometry system (TILL Photonics, GmbH) was used to assess the GM1 and cholesterol content on the cell membrane and the intracellular Ca\(^{2+}\) concentration. The fluorescent probes were excited at desired wavelength using a monochromator and the emission fluorescence was collected by a photodiode.

To assess membrane GM1, PC12 cells were fixed and stained with Alexa Fluor\(^{®}\) 488 conjugated CTB (1 \(\mu\)g ml\(^{-1}\) in PBS, Invitrogen) followed by extensive washing with PBS. The fluorescent CTB was excited at 488 nm. For measuring membrane cholesterol, PC12 cells were fixed and stained with filipin (0.05 mg ml\(^{-1}\) in PBS, Sigma) and washed with PBS. Filipin was excited at 340 nm. The emitted fluorescence intensity was subtracted from background intensity to indicate the amount of GM1 or cholesterol on the cell membrane.

For Ca\(^{2+}\) imaging, PC12 cells were first incubated with a M membrane permeable Ca\(^{2+}\) dye, Fura2 acetoxymethyl ester (Fura2-AM, Molecular Probes), in a serum-free photodiode.