<table>
<thead>
<tr>
<th>Title</th>
<th>1H, 13C, and 15N resonance assignments of subunit F of the A1AO ATP synthase from Methanosarcina mazei Gö1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Gayen, Shovanlal; Vivekanandan, Subramanian; Biukovi, Goran; Grüber, Gerhard; Yoon, Ho Sup</td>
</tr>
<tr>
<td>Date</td>
<td>2007</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/8507</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2007 Springer. This is the author created version of a work that has been peer reviewed and accepted for publication by Biomolecular NMR Assignments, Springer. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1007/s12104-007-9004-5].</td>
</tr>
</tbody>
</table>

\[^1H, ^13C, \text{and} ^15N \] resonance assignments of subunit F of the A\textsubscript{1}A\textsubscript{O} ATP synthase from \textit{Methanosarcina mazei} Göl

\begin{center}
\textit{Shovanlal Gayen} \cdot \textit{Subramanian Vivekanandan} \cdot \textit{Goran Biuković}∗ \cdot \\
\textit{Gerhard Grüber} \cdot \textit{Ho Sup Yoon}∗
\end{center}

\textit{Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore} \\
* E-mail: ggrueber@ntu.edu.sg, hsyoon@ntu.edu.sg

Abstract Energy coupling between the A\textsubscript{1} ATPase of archaea type A\textsubscript{1}A\textsubscript{O} ATP synthase and its integral membrane sub-complex A\textsubscript{O} occurs via the stalk part, formed by the subunits C, D and F. To provide a molecular basis of the energy coupling, we performed NMR studies. Here, we report the assignment of the subunit F.

Keywords A\textsubscript{1}A\textsubscript{O} ATP synthase \cdot A\textsubscript{1} ATPase \cdot \textit{Methanosarcina mazei} Göl \cdot Heteronuclear NMR

Biological context

A key component in cellular bioenergetics is the ATP synthase. The enzyme from archaea represents a new class of ATPases, the A\textsubscript{1}A\textsubscript{O} ATP synthases. They are composed of two domains, a membrane-embedded electrically-driven motor, A\textsubscript{O}, and a chemically-driven motor, A\textsubscript{1}. Adenosine triphosphate (ATP) is synthesized or hydrolyzed on the A\textsubscript{1} headpiece, consisting of an A\textsubscript{3}B\textsubscript{3} domain. Previously, the 2.55 Å and 1.5 Å crystal structure of these major nucleotide-binding subunits A (Maegawa et al. 2006) and B (Schäfer et al. 2006a), respectively, have been solved, which provide important insight into nucleotide-binding positions of the catalytic A\textsubscript{3}B\textsubscript{3} headpiece of this complex. The energy provided for or released during that process inside the A\textsubscript{3}B\textsubscript{3} sector is transmitted to the membrane-bound A\textsubscript{O} domain. The energy coupling between the two active
domains occurs via the so-called stalk part, an assembly composed by the subunits C, D and F (Müller and Grüber 2003). Most recently, the low-resolution shape of subunit F of the A1A0 ATP synthase from the archaeon Methanosarcina mazei G01 in solution was determined by small angle X-ray scattering, showing that subunit F is an elongated molecule in solution with two distinct domains (Schäfer et al. 2006b). The subunit-subunit interaction of F inside the A1A0 ATP synthase in the presence of chemical crosslinker was studied as a function of nucleotide binding, demonstrating movements of F relative to the nucleotide-binding subunit B (Schäfer et al. 2006b) and supporting its function as an essential coupling element inside the enzyme during ATP hydrolysis and synthesis. However, the lack of any high resolution structural data for the stalk elements makes it particularly difficult to establish the molecular mechanism for the coupling of ATP hydrolysis to ion translocation. Thus, to understand the function of subunit F of the M. mazei G01 A1A0 ATP synthase in more detail two- and three-dimensional heteronuclear (13C, 15N) NMR spectroscopy has been performed. Here we present 1H, 13C, and 15N resonance assignments of this protein.

Methods and experiments

Protein preparation

The cloning of the pET9d-His6 vector containing the DNA fragment, which encodes subunit F plus six His-residues at the N-terminus, has been described recently (Schäfer et al. 2006b). The uniformly 15N- and 15N/13C-labeled His6- subunit F samples were expressed in E. coli BL21 (DE3) cells using M9 minimal media containing 15NH4Cl, or 15NH4Cl plus [U-13C]-glucose. The protein was purified by Ni2+-NTA affinity- and ion-exchange chromatography (Resource Q (6 ml), Amersham Biosciences) as described (Schäfer et al. 2006b). For NMR studies, the protein samples in 25 mM sodium phosphate pH 6.5 have been concentrated to 0.5–1 mM using Centriprep YM-10 (3 kDa molecular mass (MM) cut off) spin concentrators (Millipore).

NMR spectroscopy

All NMR spectra were recorded at 288 K on Bruker AV600 spectrometer equipped with a cryoprobe accessory. Backbone 1H, 15N and 13C resonance were assigned using data from 2D 1H-15N HSQC, 3D HNCA, HNCACB, CBCACONH, HNCOCA and HNCO spectra (Fig. 1). The
side chain 1H and 13C were obtained from 3D HCC(CO)NH-TOCSY, 3D (H)CC(CO)NH-TOCSY, HCC-HCCH-TOCSY, (H)CCH-TOCSY, 3D 15N-1H-NOESYHSQC (Sattler 1999; Simon and Sattler 2004). All spectra were processed with NMRPipe (Delaglio et al. 1995) and analyzed by SPARKY (Goddard and Kneller 2003).

Assignments and data deposition

All non proline 15NH correlations have been assigned, except for Phe24, Gly92, Ser93, Glu98 and Asp107 which were absent in the 2D 1H/15N-HSQC spectra recorded.

Assignment ambiguities were resolved using NOE data derived from the 15N-NOESY-HSQC. No resonance assignments were made for the N-terminal hexahistidine-tag residues His3–His8 and for the residues Met1 and Lys2 due to their flexibility. In total more than 95% of backbone, 91% of side chain hydrogen and 80% of side chain carbon resonance assignments were made. The predicted fold using CSI (Wishart and Sykes 1994) consists of five α-helices, four β-sheets and NOE data from the 15N-NOESY-HSQC are consistent with this. The absence of Phe24 amide resonance could be due to the presence of weak intensity of 15NH correlation of neighboring residue Gly23, suggestive of enhanced amide exchange at this position. However, NOE data suggest this region is in fact α-helical. The initial calculated structure of subunit F confirms and supports the missing assignments, as this protein exhibits a rigid N-terminal domain comprising first 90 amino acid residues and a detached flexible C-terminal extension containing 20 amino acid residues. Almost all the unassigned resonances were lying in the C-terminal flexible domain. The presence of Gly and Ser rich in the C-terminal would favor rapid amide exchange rate in the C-terminal regions of F subunit. For the reasons mentioned above no resonance assignments could be made for Gly92 and following are the missing backbone assignments for the residues—13C'- Ser91, Ser93, Thr94, Glu98, Glu102 and Ala103 and Hα- Arg97. The 1H, 13C and 15N resonance assignments have been deposited in the BioMagResBank (http://www.bmrb.wisc.edu) under accession number 15046.

Acknowledgements S. Gayen is a recipient of the Graduate Research Scholarship, School of Biological Sciences, Nanyang Technological University (NTU), Singapore. This research was supported by the School of Biological Sciences, Nanyang Technological University, Singapore (SBS/SUG/31/05) and A*STAR BMRC (06/1/22/19/467).
References

List of Figures

Fig. 1 2D 1H-15N-HSQC spectrum of subunit F of the A_1A_0 ATP synthase from M. mazei Gö1. The spectrum was recorded at 288 K on a Bruker Avance 600 MHz spectrometer. The assignments for resolved backbone residues are labeled with one letter amino acid code and residue number. The peaks marked by an asterisk (*) indicate the folded side-chain NεH protons of Arg.