<table>
<thead>
<tr>
<th>Title</th>
<th>Rainbow and blueshift effect of a dispersive spherical invisibility cloak impinged on by a nonmonochromatic plane wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhang, Baile; Wu, Bae-ian; Chen, Hongsheng; Kong, Jin Au</td>
</tr>
<tr>
<td>Date</td>
<td>2008</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/8755</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2008 The American Physical Society. This paper was published in Physical Review Letters and is made available as an electronic reprint (preprint) with permission of The American Physical Society. This paper was published in Physical Review Letters. The paper can be found at the following official DOI: http://dx.doi.org/10.1103/PhysRevLett.101.063902. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Rainbow and Blueshift Effect of a Dispersive Spherical Invisibility Cloak Impinged On by a Nonmonochromatic Plane Wave

Baile Zhang,1,* Bae-Ian Wu,1,2 Hongsheng Chen,1,2 and Jin Au Kong1,2

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou 310058, China

(Received 17 April 2008; published 8 August 2008)

We demonstrate some interesting phenomena associated with a nonmonochromatic plane wave passing through a spherical invisibility cloak whose radial permittivity and permeability are of Drude and Lorentz types. We observe that the frequency center of a quasimonochromatic incident wave will suffer a blueshift in the forward scattering direction. Different frequency components have different depths of penetration, causing a rainbowlike effect within the cloak. The concept of group velocity at the inner boundary of the cloak needs to be revisited. Extremely low scattering can still be achieved within a narrow band.

Invisibility cloaking has recently received much attention in the literature [1–13]. Based on form-invariant coordinate transformations, a cloak of invisibility was proposed which can perfectly conceal arbitrary objects from detection [1,2]. Because of the fact that the physical realization of such a kind of cloak, i.e., metamaterials, must be dispersive [2,12,13], the ideal cloak can only work at a single frequency. In this Letter, the fundamental problem of how a nonmonochromatic electromagnetic wave passes through a dispersive spherical invisibility cloak is addressed, and some interesting phenomena are revealed.

In an ideal spherical cloak, the radial constitutive parameters \(\varepsilon_r \) and \(\mu_r \) are required to vanish at the inner boundary [2] at the single frequency which can be named as the “cloaking frequency.” Since any physical wave has a nonzero bandwidth, the transition of \(\varepsilon_r \) and \(\mu_r \) from positive to negative will be formed within the cloak at frequencies entirely below or above the cloaking frequency because of dispersion. Similar positive-to-negative transition of constitutive parameters has been shown to cause some peculiar phenomena such as negative refraction [14] and superlens [15]. Resonances caused by surface polaritons between positive and negative index media have also been shown to produce strong anomalous scattering [16]. Therefore, it is necessary to analyze the influence of this transition of constitutive parameters on the performance of the cloak.

Based on a strict and efficient analytic model of a 3D dispersive and lossy spherical invisibility cloak, we show that the frequency center of a quasimonochromatic wave which is originally at the cloaking frequency will suffer a blueshift in the forward direction after passing this dispersive cloak. The singularity of wave equation inside the cloak will form impenetrable walls for electromagnetic waves. A rainbowlike effect will be formed since fields of different frequencies will penetrate into different depths inside the cloak. Meanwhile, the concept of group velocity at the inner boundary of the cloak is selectively valid only for those frequencies above the cloaking frequency. Extremely low RCS (radar cross section) can still be achieved for a narrow bandwidth. All of these aspects provide us with new insights into the cloaking phenomena in practice.

The configuration of a 3D spherical cloak with inner radius \(R_1 \) and outer radius \(R_2 \) follows that in Ref. [7]. The cloak shell within \(R_1 < r < R_2 \) is a radially uniaxial and inhomogeneous medium with permittivity tensor \(\varepsilon = \varepsilon_r(r)\hat{r}\hat{r} + \varepsilon_\theta\hat{\theta}\hat{\theta} + \varepsilon_\phi\hat{\phi}\hat{\phi} \) and permeability tensor \(\mu = \mu_r(r)\hat{r}\hat{r} + \mu_\theta\hat{\theta}\hat{\theta} + \mu_\phi\hat{\phi}\hat{\phi} \). An \(E_z \)-polarized plane wave \(E_{z1} = \hat{z}\varepsilon e^{ik_zz} \) is incident upon the cloak. The electromagnetic wave in the cloak shell can be decomposed into TM and TE modes with respect to \(\hat{r} \) [17], corresponding to scalar potentials \(\Psi_{TM} \) and \(\Psi_{TE} \) [7,11]. Since TM and TE modes have similar derivations, we focus on the former. The \(\tau \) dependent function \(f(r) \) of \(\Psi_{TM} \) satisfies Eq. (1) (i.e., Eq. (4) in Ref. [7]), where \(k_1^2 = \omega^2\varepsilon_1\mu_1 \).

\[
\frac{\partial^2}{\partial r^2} + \left[k_0^2 - \left(\frac{\varepsilon_r}{\varepsilon_0} \right) \frac{n(n+1)}{r^2} \right] f(r) = 0. \tag{1}
\]

By utilizing the relation between constitutive parameters specified in [2] at the cloaking frequency, i.e., \(\varepsilon_r = \varepsilon_0 \left(\frac{r-R_1}{R_2-R_1} \right)^j, f(r) \) can be converted to the Riccati-Bessel function [7]. However, \(\varepsilon_1/\varepsilon_0 \) is a function of frequency and position, which makes this specified relation no longer hold at a deviated frequency.

In order to solve this difficulty, we shall revisit Eq. (1). Since \(\varepsilon_r \) does not vary much with variation of \(r \), we can divide the cloak shell in \(R_1 < r < R_2 \) into a lot of thin layers, which is similar to the recipe applied in practice [10]. Then both \(\varepsilon_r \) and \(\varepsilon_\theta \) in each layer of \(R_j^0 < r < R_j^{(i+1)} \) can be treated as constants, such that Eq. (1) has solutions

\[
f(r) = a_{jm}\psi_{jm}(k_jr) + a_{jm}R_j^{TM} \xi_{jm}(k_jr), \quad j = 1, 2, \ldots, N \tag{2}
\]

where \(\psi_{jm} \) and \(\xi_{jm} \) are Riccati-Bessel functions of the first and the third kind, respectively, with a complex order.
\(\nu = \sqrt{\frac{\varepsilon_r n(n+1)}{\varepsilon_r + \frac{1}{2}} - \frac{1}{2}} \) and \(R_{j\text{TM}}^\text{TM} \) is defined as the general reflection coefficient of \(n \)th order in the \(j \)th layer. The field solution in each layer can then be expressed with different coefficients \(a_j \) and \(R_{j\text{TM}}^\text{TM} \) as unknowns. By matching the boundary conditions between adjacent layers, all the coefficients can be solved. The coefficients for TE waves can be obtained similarly. In other words, the problem of solving the field solution in the whole space has been converted to solving a set of simultaneous linear equations which can be done in a straightforward manner.

To validate this algorithm, we study the dependence of normalized RCS (radar cross section normalized to \(\pi R_2^2 \)) on the number of layers. The parameters at each layer’s center are set to match those proposed in Ref. [2] and \(R_2 = 2R_1 = 1.5 \lambda_0 \) at the cloaking frequency of 10 GHz, where \(\lambda_0 = 3 \) cm. The concealed region \(r < R_1 \) is specified to be PEC (perfect electric conductor). It can be found that as the number of layers increases, the RCS drops rapidly. When the number of layers reaches 100, the normalized RCS reaches \(10^{-7} \), which is extremely close to “perfect invisibility.”

Since each layer’s parameters can be specified arbitrarily, we are able to deal with more complicated situations including cases with anisotropic loss and dispersion. Since \(\varepsilon_r \) and \(\mu_r \) are larger than 1 and do not vary within the whole cloak shell, they can be treated as constants over the frequency band of interest. The radial constitutive parameters \(\varepsilon_r \) and \(\mu_r \) can be thought of as being achieved by embedding radially uniaxial metamaterials in a background with \(\varepsilon_\| \) and \(\mu_\| \). Subsequently, Drude model [18] and Lorentz model [19] are applied to \(\varepsilon_r \) and \(\mu_r \), respectively, as follows:

\[
\varepsilon_r = \varepsilon_\| \left(1 - \frac{f_0^2}{f(f + i\gamma_1)} \right),
\]

\[
\mu_r = \mu_\| \left(1 - \frac{F}{1 + i\gamma_1/f - f_0^2/f^2} \right).
\]

For simplicity, we set \(\gamma_1 = \gamma_2 = \gamma \) and \(F = 0.78 \). Forcing the real parts of parameters at the center of each layer to match the relation proposed in Ref. [2] at the cloaking frequency, the corresponding \(f_0 \) and \(f_\| \) for each layer can be calculated as well as subsequent \(\varepsilon_r \) and \(\mu_r \) at other frequencies.

Now let us first consider the case where \(\gamma \neq 0 \). Then \(\varepsilon_r \) in Eq. (1) is always nonzero. Figure 1 shows the RCS spectrum of a dispersive cloak with different losses where the number of layers is set as \(N = 100 \). By decreasing \(\gamma \), the RCS curve is convergent. It can be seen that though invisibility is sensitive to frequency deviation, extremely low RCS can still be obtained within a small finite bandwidth around the cloaking frequency. This result excludes the possibility of some kind of large anomalous scattering [16] in the vicinity of the cloaking frequency. Moreover, the working bandwidth of the cloak depends on the sensitivity of the detector outside. For example, if we set 0.04 as the upper limit of the undetectable normalized RCS, then the working bandwidth of the cloak is about 100 MHz around the cloaking frequency of 10 GHz. An arbitrary nonzero RCS limit can always be satisfied by narrowing the bandwidth.

Next let us consider the other case where \(\gamma = 0 \). What is different in this case is that, if the frequency is below the cloaking frequency, then the normal dispersion requires that \(\varepsilon_r \) (or \(\mu_r \) if TE waves are considered) close to the inner boundary be negative and Eq. (1) has a singularity at the position where \(\varepsilon_r \) is zero. This singularity will form an impenetrable wall for TM waves as we will demonstrate in the following. Similarly, another singularity caused by \(\mu_r \) of zero value will form a wall for TE waves. Figure 2(a) shows the distribution of \(E_x \) in \(xz \) plane when a \(x \)-polarized incident plane wave \((E_x = \tilde{E} e^{i\theta}) \) is passing through the cloak along the \(z \) direction. For the sake of illustration, we choose the frequency deviation to be \(-532 \) MHz and \(\gamma = 0.0001 \) GHz. Since most contribution of \(E_x \) field in \(xz \) plane except near the \(z \) axis comes from TM waves, it can be seen that the TM field is expelled by a very thin “wall” within the shell which little TM field can penetrate. The position of this wall coincides with the position where \(\varepsilon_r \) is zero. In the \(yz \) plane which is not shown in this Letter, we can see a similar wall for \(H_y \) field except with a different location because \(\mu_r \) has different dispersion and thus different location of zero value. The influence of loss on the field distribution is shown in Fig. 2(b) where the amplitude of \(E_x \) field along the direction \((\theta = 2\pi/3, \phi = 0) \) where TM field is dominant is plotted. It can be seen that with decreasing \(\gamma \), the field outside of the wall \((r > R_{1\text{TM}}) \) is almost unchanged and the field inside of the wall \((r < R_{1\text{TM}}) \) is decreasing fast while the wall at \(r = R_{1\text{TM}} \) becomes thinner and sharper. Further decreasing of \(\gamma \) requires increasing the number of layers \(N \) which is not shown in

\[\text{FIG. 1. Dependence of RCS (normalized to } \pi R_2^2 \text{) on different frequencies and losses. } R_2 = 2R_1 = 1.5 \lambda_0, \lambda_0 = 3 \text{ cm. In the concealed region } r < R_1 \text{ is PEC.}\]
The group velocity at the cloaking frequency is deviated from the cloaking frequency. A more effect is induced by the incoming wave directly when the cloaking frequency [11]. But here this wall for TM waves requires the tangential components penetrate into different depths from and thickness . Since this wall for TM waves requires the tangential components penetrate into different depths from , the field at as shown in Fig. 3 where six frequencies are considered. Such a frequency selection challenges a basic concept in optics, group velocity. The group velocity at the inner boundary of the cloak has been calculated from the point of view of geometrical optics to study causality of the cloak [12,13]. However, what really happens at the inner boundary should be based on the field solution directly. As we all know, the group velocity at the cloaking frequency of represents the speed of the envelop formed by two close frequency components for the wave with frequency it is able to reach the inner boundary while for the wave with frequency , as we have shown, will be stopped somewhere between the PMC and PEC walls and thus never reach the inner boundary . Therefore the group velocity at is meaningful only for the frequencies above the cloaking frequency, i.e., . As a result, the group velocity at the cloaking frequency is meaningless.

The different responses of cloak to different frequencies can lead to another interesting phenomenon. At the cloaking frequency , the strictly monochromatic wave will pass through the cloak without any distortion [2,4,7]. So an observer looking at an object emitting or reflecting this monochromatic wave behind the cloak will see exactly the same object as if there is no block in front of it. But is this true for a more physical quasimonochromatic wave possessing a narrow band? For the wave with frequency slightly deviated above at the most part of the cloak shell does not change much except the part close to the inner boundary . Thus only a narrow spectrum of wave can reach the PEC core within . From the view of the observer outside, the scattering looks as if it is from a very small PEC particle; i.e., Rayleigh scattering occurs in this case [12]. For a very small PEC particle with , the first order scattering coefficients become dominant [20], where and which in this case is . The positive
of wave equation inside the cloak will form impenetrable walls for electromagnetic waves. A rainbowlike field distribution inside the cloak will be formed since different frequencies have different depths of penetration. The frequency center of a quasimonochromatic wave with narrow band will be blueshifted in the forward direction after passing through the cloak. The group velocity at the inner boundary of the cloak is meaningful only when the frequency is above the cloaking frequency. Extremely low RCS can still be achieved within a narrow band around the cloaking frequency.

This work is sponsored by the ONR under Contract No. N00014-01-1-0713, the Department of the Air Force under Air Force Contract No. F19628-00-C-0002, and the Chinese NSF under Grant No. 60531020.

*bzhang@mit.edu

[16] M. I. Tribelsky and B. S. Luk’yanchuk, Phys. Rev. Lett. 97, 263902 (2006).