<table>
<thead>
<tr>
<th>Title</th>
<th>The hazards of aircraft wake vortices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Rudy, Ryantono Setiawan</td>
</tr>
<tr>
<td>Citation</td>
<td>Rudy, R. S. (2011, March). The hazards of aircraft wake vortices. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.</td>
</tr>
<tr>
<td>Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/8978</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 The Author(s).</td>
</tr>
</tbody>
</table>
The Hazards of Aircraft Wake Vortices

Research Motivation
- A380s entered commercial service in 2007
- Limited airport capacity
- Instrument Flight Rules separation requirements too conservative

Research Objective
To recommend a less conservative, yet safe set of guidelines to in-trail spacing of aircrafts during critical flight phases (take-off and landing) to increase airport capacity

Wake Vortex Encounters
- Penetration along the axis of the vortex results in roll upset (Mode 1)
- Flight through the downwash region results in a loss of rate of climb and hence increased take-off distance (Mode 2)
- Penetration across the vortex results in significant structural load factors (Mode 3)
- Focus on Mode 1 and Mode 3 during take-off and landing

Criteria for Safe Separation
- Mode 1: \(\frac{C_l}{C_{\alpha}} < 1 \)
- Mode 3: \(\frac{C_m}{C_{\alpha \delta}} < 1 \) and \(|\Delta n| < 1 \)

Sample Results
A380s as both generating and following aircrafts
- Simplified Mode 1 encounter: no ground effect, no vortex dissipation

Future Work
- Apply methodologies to various classes of aircrafts for Modes 1 and 3
- Recommend revised separation minima