<table>
<thead>
<tr>
<th>Title</th>
<th>Intelligent control & navigation of octocopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yuan, Shenghai</td>
</tr>
<tr>
<td>Citation</td>
<td>Yuan, S. H. (2012, March). Intelligent control & navigation of octocopter. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.</td>
</tr>
<tr>
<td>Date</td>
<td>2012</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/9031</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012 The Author(s).</td>
</tr>
</tbody>
</table>
Project Title: Intelligent Control and Navigation of Tilted Octocopter
Supervisor: Prof Er Meng Joo
Collaborators: Ms Zhang Yixin
Co-supervisor: Prof Xie Lihua

Methodology

1. Vision Sensor Unit
 - Hacked KINECT sensor output RGB & Depth image to Mini-PC. Both image are in 640*480 resolution

2. Vision process Unit
 - Vision tracking program is written to Process vision data. Output yaw pitch roll & altitude command to Ardupilot board
 - Duo core Windows 7 based Mini PC
 - Visual studio C++ configuration
 - OpenCV & OpenNI plug-in
 - Apple device wifi control enabled

3. Ardupilot Mega Receive Yaw Pitch Row Alt cmd and process
 - Ardupilot Mega Microcontroller 2560
 - IMU include 3 axis GYRO & ACCELEROMETER

4. Driver receive Processed PWM from Ardupilot mega to each Actuator @ 8 corners
 - 20A ESC, 20A Bell brushless out runner motor & 10 * 3.9 propeller

System introduction

Project is about building autonomous UAV Vision guidance system & exploring various vision process method

Originally designed to
Compete in indoor flying competition
Enhanced function include
Tracking & Explore

Future Work

- Stability Improvement
- Program optimization
- Aircraft carrier and navigator
- Weight Reduction
- Multi user & layer access control

Specs

- Dimension: 1m*1m
- Weight: 2kg
- Max take-off Weight: 5.4kg
- Speed: 20km/h
- Max Flying time: 15 min

Future Work

- 3D Skeleton Command recognition
 - With OPENNI plug-in
- Object/Car tracking
 - With OPENCV plug-in