<table>
<thead>
<tr>
<th>Title</th>
<th>Analysis of field-emission from a diamond-metal-vacuum triple junction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sun, Sheng; Ang, Ricky Lay Kee</td>
</tr>
<tr>
<td>Citation</td>
<td>Sun, S., & Ang, L. K. R. (2012). Analysis of field-emission from a diamond-metal-vacuum triple junction. Journal of applied physics, 112(6), 066102-.</td>
</tr>
<tr>
<td>Date</td>
<td>2012</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/9299</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012 American Institute of Physics. This paper was published in Journal of Applied Physics and is made available as an electronic reprint (preprint) with permission of American Institute of Physics. The paper can be found at the following official DOI: [http://dx.doi.org/10.1063/1.4752712]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Analysis of field-emission from a diamond-metal-vacuum triple junction
S. Sun and L. K. Ang

Citation: J. Appl. Phys. 112, 066102 (2012); doi: 10.1063/1.4752712
View online: http://dx.doi.org/10.1063/1.4752712
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v112/i6
Published by the American Institute of Physics.

Related Articles
Enhanced field emission from large scale uniform monolayer graphene supported by well-aligned ZnO nanowire arrays
Structure- and composition-dependent electron field emission from nitrogenated carbon nanotips
Ultra low field electron emission of graphene exfoliated from carbon cloth
Improving the field emission of carbon nanotubes by lanthanum-hexaboride nano-particles decoration
Field emission from diamond-coated multiwalled carbon nanotube “teepee” structures

Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors

ADVERTISEMENT
Explore AIP’s open access journal: • Rapid publication • Article-level metrics • Post-publication rating and commenting
Analysis of field-emission from a diamond-metal-vacuum triple junction

S. Sun¹ and L. K. Ang¹,²,a)

¹School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
²Engineering Product Development, Singapore University of Technology and Design, Singapore 138682

(Received 21 May 2012; accepted 22 August 2012; published online 18 September 2012)

A quantitative electron tunneling model is constructed to calculate the electron emission from a diamond-metal-vacuum triple junction, including the effects of the field enhancement at the interface of the triple junction, the reduction on the barrier height and the negative electron affinity on the diamond surface. The difference between the emission processes with and without light exposure is also investigated. © 2012 American Institute of Physics.

Diamond is known to have excellent field emission properties as compared to other semiconductors. The negative electron affinity (NEA) characteristic on the diamond surface has motivated people to investigate its field emission properties for electron to tunnel from diamond into vacuum. However, with a large band gap (5.5 eV), it is almost impossible to directly get a low turn on voltage for intrinsic diamond. To take full advantage of NEA, electrons must be present either in the conduction band or in a subband near the vacuum energy. Nevertheless, no n-type dopant suitable for cold field emission has been reported. The best choice is the substitutional nitrogen doped type Ib diamond, with nitrogen forming a deep donor level at about 1.7 eV below the conduction band. Excellent low-voltage-high-current properties for electron to tunnel from diamond into vacuum. Nevertheless, no n-type dopant suitable for cold field emission has been reported. The best choice is the substitutional nitrogen doped type Ib diamond, with nitrogen forming a deep donor level at about 1.7 eV below the conduction band. Excellent low-voltage-high-current field emission had been demonstrated by using type Ib N-doped diamond and amorphous diamond-like films on metal substrates.

An interesting experiment had proposed a new mechanism combining the high electric fields at diamond-metal-vacuum triple junction and the mobile electron surface states that formed on NEA surfaces. The experimental results indicated that it can emit measurable current density at a gate voltage as low as 0.6 V, which is much smaller than the conventional diamond emitter (at about 8 to 10 V). However, there is no yet quantitative model able to describe clearly the emission mechanism with comparison to experimental measurements for such a triple junction structure using type Ib diamond, which is the objective of this paper.

Before presenting our model, it is essential to review the process of electron transport from the metal substrate into the diamond layer for a traditional diamond emitter (see Fig. 1(a)). It is generally accepted that a Schottky barrier is formed at the metal-diamond interface as shown in Fig. 1(c) (black curve) for its corresponding band structure. Here, \(\Phi_B \approx 4 \) eV is the barrier height at the metal-diamond interface, which is equal to the average work function of the metal (Cs and Ni salt). The deep donor level \(E_D \) is formed at 1.7 eV below the conduction band \(E_C \) for type Ib diamond (\(E_C - E_D = 1.7 \) eV, and \(E_D \) is assumed to be pinned with large donor concentration). The build-in potential at the junction is \(V_B = V_a + V_b \), where \(V_a \) is the external applied bias and \(V_b \) is the potential difference between the peak of the Schottky barrier and the bottom of the conduction band at \(V_a = 0 \). Note the definition of \(V_a \) and \(V_b \) can be found in Ref. 14. At the diamond-vacuum interface, the vacuum energy \(E_{vac} \) should be below the conduction band \(E_C \) to represent the NEA characteristic, and the potential drop is determined by the surface treatment techniques used in the experiment.

Compared to the traditional diamond emitter [Fig. 1(a)], there are three major differences in the triple junction structure [Fig. 1(b)], with its corresponding band diagram depicted in Fig. 1(c) (red curve). First, in addition to the geometrical field enhancement on the metal-diamond interface due to any protrusions on the metal substrate, the local electric field at the metal-diamond-vacuum junction can be further increased by an additional factor, which is up to a value equal to the dielectric constant (\(\epsilon_r = 5.68 \)) of the diamond. Second, the electrons will transport into the diamond surface states at energy \(E_s \), which is found to be 1 eV below the conduction band energy \(E_C \), given by \(E_s = E_f = 0.7 \) eV. Finally, besides the Schottky barrier \(V_1(r) \) at the depletion region, there might be another barrier \(V_2(r) \) formed at the diamond-vacuum interface (NEA surface) as long as \(E_C > E_{vac} > E_s \).

To calculate the emission current density, we solve

\[
J = \frac{m_0 q}{2\pi^2 h^3} k_B T \int_0^\infty T_C(E) \exp \left(\frac{E - E_f}{k_B T} \right) \, dE, \quad (1)
\]

where \(m_0 \) is the free electron mass, \(h \) is the reduced Plank constant, \(k_B \) is the Boltzmann constant, \(T \) is the temperature, and \(T_C(E) \) is the corresponding electron tunneling coefficient through either a single barrier \(V_1(r) \) or a dual-barrier \(V_1(r) \) and \(V_2(r) \) (see red curve in Fig. 1(c)). Note an earlier work, which directly used the Fowler-Nordheim (FN) law to calculate the emission current is not accurate as the potential barrier \(V_1(r) \) [see Eq. (2) below] is very different from the specific potential form \(V(r) = \Phi_B - F \times r - Q/r \) assumed in the FN law, where \(Q/r \) is the image charge potential.

--

Authors to whom correspondence should be addressed. Electronic mail: ricky_ang@sutd.edu.sg.
The expression of \(V_1(r) \) can be derived based on prior models by considering the metal protrusive surface as spheres with radius \(R \), which give analytical expressions of

\[
V_1(r) = C_1 - \frac{C_2}{r} \frac{2\pi q N_d r^2}{3\epsilon_r \epsilon_0},
\]

where

\[
C_1 = -\Phi_{B1} + \frac{2\pi q N_d R^2}{3\epsilon_r \epsilon_0} + \frac{4\pi q N_d (R + \omega)^3}{3\epsilon_r \epsilon_0 R},
\]

\[
C_2 = \frac{4\pi q N_d (R + \omega)^3}{3\epsilon_r \epsilon_0}.
\]

This equation can be used to determine the depletion width \(\omega \) as a function of built-in potential \(V_B \) for fixed \(N_d \) and \(R \). For the second barrier \(V_2(r) \) at the diamond-vacuum interface, it is assumed to be

\[
V_2(r) = \Phi_{B2} - F \times r,
\]

where \(\Phi_{B2} = E_{vac} - E_F \) is the barrier height, \(F = qV_a/D \) is the average electric field, \(V_a \) is the external applied voltage, and \(D (=100 \text{ nm}) \) is the diamond slab’s thickness.

Figure 2 demonstrates, respectively, the Schottky barrier profile \(V_1(r) \) for (a) various build-in potential \(V_B \) at \(N_d = 10^{19} \text{ cm}^{-3} \) and \(R = 10 \text{ nm} \), (b) various donor concentration \(N_d \) at \(V_B = 10 \text{ eV} \) and \(R = 10 \text{ nm} \), and (c) various metal sharpness \(R \) at \(V_B = 10 \text{ eV} \) and \(N_d = 10^{19} \text{ cm}^{-3} \). The other parameters are \(\Phi_{B1} = 3 \text{ eV} \) and \(\Phi_{B2} = 4 \text{ eV} \), \(V_a = \Phi_{B1} - \left(E_F - E_v \right) = 2.3 \text{ eV} \) and the metal fermi energy is kept at 6 eV.
6 eV. By increasing V_B from 8 to 12 eV, which is equivalent to an applied voltage of $V_a (= V_B - V_h)$ = 5.7 to 9.7 eV, the barrier width will become smaller, as shown in Fig. 2(a). The depletion width ω decreases with larger N_d, and increases with larger R, as shown in Figs. 2(b) and 2(c), respectively.

To compare our model with experimental results, we have used $R = 10$ nm, and the donor concentration $N_d = 10^{19}$ cm$^{-3}$ in order to pin the deep donor level E_d at 1.7 eV below barrier height E_F at the triple junction between metal, diamond, and vacuum, as shown in Fig. 3(b), which show the difference between the emission-in-darkness characteristic at V_a = 2.5 eV and V_a = 1 eV. For solid lines, V_B = 2.5, and 3.5 eV (left to right). For dashed line, V_B = 3.5 eV (b) The emission current density with (dashed line) and without (solid line) light exposure at Φ_B = 2.5 eV and Φ_B = 1 eV.

First, without including the additional field enhancement at the triple junction, between metal, diamond, and vacuum, we consider only the reduction of the Schottky barrier height ($\Phi_B = 3.5$ eV), and the existence of the second barrier ($\Phi_B' = 1$ eV) as shown in Fig. 3(a) (dashed lines), which shows that the emission current density J is about 10^{-4} A/m2 at around $V_a = 5.3$ V, much smaller as compared to the conventional diamond emitter operating around 8 to 10 V with a barrier $\Phi_B \approx 4$ eV. This finding proves that a smaller Schottky barrier Φ_B do contribute to a smaller turn-on voltage; however, the calculated value $V_a = 5.3$ V (or electric field $F = 5.3V/100$ nm = 53 V/\mu m) is still significantly larger as compared to 0.6 V (or $F = 6$ V/\mu m) reported in the triple junction experiment.

Thus, it is rational to include the additional field enhancement factor due to triple junction, which is up to $\epsilon_t = 5.68$. By assuming an enhancement of 5, the calculated results are shown in Fig. 3(a) [solid lines] at $\Phi_B = 2, 2.5,$ and 3.5 eV (left to right), where V_a is decreased by a factor of 5, closer to 0.6 V. For example, we have $V_a = 1.06$ V and 0.68 V, respectively, at $\Phi_B = 3.5$ eV and 2.5 eV. The emission current density is independent on the second barrier height Φ_B', where the results are nearly identical for $\Phi_B' = 1$ eV and $\Phi_B' = 0.5$ eV. Hence, we conclude that the effects of field enhancement at the triple junction and the reduced Schottky barrier height Φ_B are essential to get a smaller turn-on voltage to explain the experimental findings.

Lastly, we will briefly investigate the emission process with and without light exposure reported in the experiment. When the cathode is exposed to light with photon energy higher than 2 eV (the ionization energy of nitrogen), the photon-generated electrons will neutralize the nitrogen dopant, which results in a larger turn-on voltage due to the reduction in the donor concentration. However, as the applied voltage increases, the dopant will be re-ionized recovering to the emission-in-darkness characteristic at $V_a \approx 3$ V. Since the exact relationship between the increment rate of the donor concentration N_d and the applied voltage V_a is unknown, we simply assume a linear relation governed by $N_d = 10^{19} \times (V_a/3)$ cm$^{-3}$ for $V_a < 3$ V, and $N_d = 10^{19}$ cm$^{-3}$ for $V_a \geq 3$ V in our calculation. The results are shown in Fig. 3(b), which show the difference between the emission in the darkness (solid line) and the emission in the light (dash line) at $\Phi_B = 2.5$ eV. The turn-on voltage increases to 1.25 V with light exposure, which is quite comparable with the experimental data of 1.6 V.

Our work may be extended to other triple-junction based structures or novel materials, such as graphene which has different field emission property.

This work was supported by a Singapore MOE Grant (2008-T2-01-033), and USA AORD Grant (11-4069).