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It is shown that the extended polar space for the sporadic Fischer group Fi22 is 
the only extended polar space which has more than two extended planes on a block 
and is not isomorphic to a quotient of an affine polar space over GF(2). New 
examples of EGQ(4, 1) and EGQ(4, 2) are presented as well. © 1995 Academic 
Press, Inc. 

1. INTRODUCTION AND RESULTS 

This paper  is a continuation of an earlier work [ 19] by the author, 
where, among other results, the Fizz-extended polar space was charac- 
terized by a stricter assumption involving certain 3- and 4-vertex configura- 
tions in the point graph. We also prove certain conjectures made in [6]  on 
the extendability of polar spaces. Our main statement was known to be 
true under additional assumptions on the existence of a flag-transitive 
automorphism group acting on the geometry, see e.g. [6, 11, 17, 22]. 

A connected incidence system F = 1"(~, ~ )  is an extended polar space 
(respectively extended (projective) plane) if its point residues are finite, 
thick, nondegenerate polar spaces (respectively finite nondegenerate 
projective planes). 

We say that an extended polar space F admits extended planes if there 
exists a nonempty set Z = Z(1") of subsets of the set ~ of points of 1" such 
that {x} u ~ ~ L" whenever rc is a plane in the residue Fx of the point x and 
for any ~ e  N the incidence system of points and blocks of 1" on ~ is an 
extended projective plane. 

THEOREM 1.1. Let 1" be an extended polar space admitting extended 
planes. Then exactly one of the following holds. 
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(i) F is a standard quotient of  an affine polar space over GF(2). 

(ii) F is the Fi22-extended polar space. 

(iii) There are exactly two extended planes on each block, and F is an 
extended Q ~ ( 4 )-polar space. 

Remark. The geometries in case (i) are all known, see [6, 4] (also 
[12, 8, 9] for various generalizations). Namely, let /" be an affine polar 
space over GF(2), that is the geometry induced on the complement of a 
geometric hyperplane in a nondegenerate polar space over GF(2). F admits 
a (proper) standard quotient if and only if the diameter of the point graph 
on F is 3. In the latter case the point graph is a two-fold antipodal cover 
of a complete graph. Here being at maximal distance is an equivalence 
relation with the classes of size 2, and the quotient is defined on the 
equivalence classes of objects (that is, points, lines, etc.). 

In case (iii), however, no examples are known at all. 

Remark. It is easy to see that F has the structure of a geometry with 
the following diagram: (see [ 5 ] for the notion of diagram geometry) 

0 0 0 - . .  0 ~ . 

The types of the elements are, from left to right, as follows: points, pairs of 
adjacent points, blocks, extended projective 2-spaces, ..., extended projec- 
tive n - 1-spaces, where n is the rank of the polar space we are extending. 
Note that the elements corresponding to the extended j-subspaces for j > 2 
should be recovered as certain subsets of points, along the lines of the 
proof of Lemma 2.2, where extended 3-spaces are reconstructed. 

The diagrams corresponding to the cases of the Theorem are as follows: 

(i) c 0 O O , - -  O 
2 2 2 

(ii) 0 0 

4 4 2 

(iii) = 
4 4 1 

Note that t ~ { 1, 2, 4}. 

O:::z:::::O , 

2 t 

Remark. Let F be an extended polar space with point residues of rank at 
least 3. If each triple of pairwise adjacent points of F lies in a block (that is, 
F is triangular) then, by [6], F admits extended planes. However, since 
the proper standard quotients of affine polar spaces are not triangular, 
the triangularity assumption is stronger than the assumption on existence of 
extended planes. 

Since in case (iii) no examples are known, it seems quite natural to ask 
the following. 
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QUESTION. Does there exist an extenson F of the Q~-(4)-polar space A ? 

It appears that the technique employed in the paper cannot cope with 
this question. Indeed, A admits hyperovals, cf. Proposition 3.1, and obvious 
counting tricks do not rule thme out. By comparing the orders of the 
automorphism groups of the hyperovals (see Section 5) to the one of A, 
one sees that the number of hyperovals in A is huge. It makes attempts to 
reconstruct /~ using a computer particularly difficult. In this respect, it 
would be quite interesting to find a computer-free construction of the 
hyperovals of A. 

Hyperovals and extensions of  generalized quadrangles. A hyperoval £2 of 
a polar s p a c e / / i s  a set of points o f / 7  such that each line of F/meets  it 
in 0 or 2 points. (In [6]  such objects are called local subspaces.) They play 
an important role in extensions of /7 .  As it was observed in [6] ,  a hyper- 
oval £2 in a polar s p a c e / / o f  rank r is a triangular extended polar space 
of residual rank r - 1. The structure of an extended polar space on £2 can 
be seen within the subgraph of the point graph o f / 7  induced by £2. 

In particular, as happens in the case we shall be mainly concerned with 
(that is r = 3, /7 is over GF(4)), f2 is an extended generalized quadrangle 
of order (4, t) (EGQ(4, t), for short), where t c { 1, 2, 4, 8, 16}. EGQ(s, t) 
are rather interesting in themselves, in particular a number of finite simple 
groups, including sporadic ones, act on them as flag-transitive auto- 
morphism groups, see e.g. [7] .  As a by-product of our investigation of 
hyperovals we find new examples of EGQ(4, t), t = 1, 2. However, these 
examples do not admit flag-transitive automorphism groups. For  t = 2  
our example is the only known example of an extension of a classical 
generalized quadrangle of order (s, t), t > 1, which does not admit a flag- 
transitive automorphism group. 

These examples are discussed in greater detail in the last section of the 
paper. 

Note that the proof of Theorem 1.1 depends upon calculations using the 
computer algebra system GAP [ 16] and its package for computations with 
graphs and groups GRAPE [20].  

2. PRELIMINARIES 

An incidence system is a pair F = F ( ~ ,  ~) ,  where ~ is a set (of points) 
and ~ is a set of subsets of ~ (called blocks), each element of ~ is of size 
greater than one and the incidence between points and blocks is defined by 
inclusion. Two points p, q are said to be adjacent (notation p 3_ q) if they 
lie in a common block. The set of points adjacent to p is denoted by p±. 
The point graph o f / '  is a graph with vertex set ~ ,  and adjacency the same 
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as in F. The residue Fp of a point p is the incidence system of points 
adjacent to p excluding p itself, and blocks on p with the point p removed. 
We say that F is connected if its point graph is connected. 

F rom now on F is an extended polar space of residual rank at least 3 
admitting extended planes. 

LEMMA 2.1. The point residues of  F are isomorphic. 

Proof Let q~ be an extended plane of F and x ~ ~. Then F x is a polar 
space of rank at least 3. Its isomorphism type is uniquely determined by the 
isomorphism type of the polar space of blocks and extended planes on xy, 
where y ~ x ± -  {x}, and incidence is by inclusion. Hence F x ~ Fy, and by 
connectivity of F the result follows. | 

LEMMA 

(i) 
(ii) 

Proof 

2.2. Let A =Fx ,  x e ~.  Then A is either 

a polar space over GF(2), or 

a rank 3 polar space over GF(4). 

Note that A admits an embedding into a projective space over 

LEMMA 2.3. Let C be a block of  F, r a point of  F, and suppose that there 
is no extended plane on r and C. Then IC c~r±l =0 ,  2 or 4. 

Proof Assume that C n r ± is not empty. Let x ~  C n r ±. Then there 
exists a unique point x 'E  C such that {x'} = C n  r±rx. So there exists a 

GF(q), cf. e.g. Tits ]-21 ]. In particular the planes of A are of a prime power 
order q. Since the only projective planes of such an order which are 
extendable are of order 2 or 4 (cf. [13, 10]), A is defined over GF(2) or 
GF(4). It remains to check that in the latter case the rank of A is 3. 

Assume to the contrary that A is defined over GF(4) and has rank at 
least 4. Let X =  {x} u r, where r is the set of points of a 3-dimensional 
singular projective subspace of A. We claim that F(X,  Nx) is an extended 
PG(3, 4), where N x =  { B e N  [ B c X } .  It  suffices to show that, given three 
points a, b, c ~ X, there exists a unique B ~ N x containing them. There exists 
a plane ~ ~ r containing a, b and c. Then H =  {x} u zc ~ S is an extended 
plane, so there exists B E Nr/ containing a, b and c. The uniqueness of B 
follows from the fact that F a is a polar space and B - - { a }  is a line of it. 
Thus F(X,  N2:) is an extended PG(3, 4). On the other hand, according to 
]- 13] (see also [ 10] ), PG(3, 4) is not extendable. This contradiction implies 
(ii). | 

It was shown in [ 6 , 4 ]  that in case (i) of Lemma 2.2, F is a standard 
(perhaps improper)  quotient of an affine polar over GF(2), and in fact all 
such objects are known. Thus we assume from now on that A = F x is a 
rank 3 polar space over GF(4). 
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block B x containing r, x and x'. Clearly C ~ B x = { x, x '  }. Since obviously 
BX'= B x, there is an equivalence relation on C c~ r ± with classes {x, x'} ..... 
Thus ICc~r±l is even. It  remains to show that C ~ r ±. 

Let {p, p ' ,  q, q'} _c Cc~ r ±, and l e t / 7  be an extended plane containing C. 
Then /7 contains a unique block C q such that q, q' e C q and C q -  {q} = 
/ 7 n  r<rq. Also, /7 contains a unique block C p such that p, p ' e  C p and 
C p -  {p} =/7c~ rirp. Note that [CPc~ cq[ is 0 or 2. Assume first that the 
latter holds, this is { y, y'} = C p c~ C q. Then the three extended planes /7, 

C p, r )  and ( C  q, r )  form a triangle in the generalized quadrangle of 
blocks and extended planes containing yy ' ,  a contradiction. So 
CP c~ Cq = ;~. 

Assume {x, x'} = r ± c~ C -  {p, p ' ,  q, q'}. Then /7 contains a unique 
block C ~ such that x, x'  e C ~ and C x - {x} = / / n  r ±rx. Repeating the argu- 
ment  above with C ~ in place of C p, one has that C ~ c~ C q = ~ .  Similarly, 
C ~ c~ C p = ~ .  So the extended plane / /  admits three blocks with trivial 
pairwise intersections, the situation well-known to be impossible. This is a 
contradiction. | 

Note  that if f" is triangular then the case Ip± c~ C[ = 4  does not occur. 

PROPOSITION 2.4. There exists p ~ .~ such that d = I~p contains a hyper- 
oval g2. Moreover,  i f  1" is not triangular then g 2 ~ r ± ~ = ~  fo r  some 
r e p ± - { p } .  

P r o o f  I f / ~  is triangular then the statement is well-known, cf. [6].  So 
we assume that /" is not triangular. There exist points p, q, r such that 
p ± q ± r _L p, but there is no extended plane containing all of them. Note 
that this implies drv(q, r) = drq(p, r) = drr(P, q) = 2. In what follows we call 
such a triple pqr of points a bad triangle. Let C be a block on pq. By 
Lemma 2.3, Cc~ r ± = {p, p ' ,  q, q'}, where p ' ,  q' are such that there exist 
blocks containing {p ,p ' ,  r}, respectively {q, q', r}. Now we are able to 
define a hyperoval g2 in Fp. For  each block B on p such that [Bc~ r±l = 4 ,  
set z, z ' e  ~2, where B c~ r ± = {p, Pl ,  z, z'} and there exist blocks containing 
{ r, p, p~} and { r, z, z'}. Note that the triangles prz  and prz '  are bad. 

The remaining possibilities for B are IBc~r-L[=2 or 6 and we set 
B ~ 2 = ~ .  We shall check that our definition of (2 is correct. If  
IB c~ r ± ] = 2 or 6 then all the triangles prw, where w e B c~ r ±, are good. So 
there is no block B' such that IB' c~r±[ = 4  and w e B ' .  We are done. This 
proves the first part  of the proposition. The second one follows from the 
construction of ~2. | 

The following observation will be useful in determining the hyperovals of A. 

LE~MA 2.5. Let  17 be a subspace o f  A. Then 17 c~ g2 is a hyperoval o f  11 

whenever g2 is a hyperoval o f  A. 
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3. CLASSIFICATION OF THE HYPEROVALS 

Let A be a rank 3 nondegenerate polar space over GF(4). Then A is one 
of the following polar spaces: Q~-(4), $5(4), Q7(4), H5(4) or H6(4 ). We 
say that two hyperovals of A are of the same type if one can be mapped 
onto the other by an automorphism of A. 

PROPOSITION 3.1. The hyperovals 0 in A are as follows. 

(i) A - Q+(4): two types, one has 72 points, the other has 96 points. 

(ii) A - H5(4): two types, one has 126 points, the other has 162 points. 
Each point of  A is collinear with a point of  (2. 

(iii) A ~_ S~(4), Q7(4)  or H6(4 ). No hyperovals. 

Proof  (i) and (ii) are results of a computer backtrack search. 
Following Lemma2.5, we first find all the hyperovals (up to type) of 
x ± ~ A  containing x ~ ( A ) .  Then we try to extend each of them to 
hyperovals of A. 

(iii) For  A ~$5(4)  we use a computer and the fact that Q ; ( 4 )  
5'4(4), which allow us, by Lemma 2.5, to start the search from a hyperoval 
of Q~(4). It turns out that none of the hyperovals of Q~-(4) are extendable 
to a hyperoval in A. 

For  A = Q7(4),  the Proposition follows immediately from Lemma 2.5 
and the fact that $5(4) c Q~-(4) does not admit hyperovals. 

For  A _-__ H6(4 ) we are able to give a proof which ks computer-free, apart 
from using part (ii) of the Proposition. Let (2 be a hyperoval of A, and let 
5 p be the set of the Hs(4)-subspaces of A. We claim that ~b c~ (2 # ~ for any 
~b~5 °. 

Let q~0 E 5 P intersect (2 nontrivially (such ~b 0 clearly exists, since there is 
an element of 5 P on any point of A). Each ~1 ~ 50 intersecting ~b 0 in a 
hyperplane with a deep point p (that is, in the set p±~l, p e ~(~bl)) satisfies 
~1 ~ (2 # Z ,  as well. Indeed, by the second part of (ii), p±~o=p±~ ~ ~b 1 
intersects (2 nontrivially, so q~ intersects (2 nontrivially. 

Finally, note that the graph defined on 5 p such that two vertices are 
adjacent iff the corresponding subspaces intersect in a hyperplane with 
deep point is connected. In particular, there is a path in this graph from ~0 
to ~. Hence 05 c~ f2 ~ ~ .  

So each of the 2752 elements q~ of 5 P corresponds to a subhyperoval of 
(2, that is, to a nonempty set ~ ~ (2. Moreover, different elements of 5 P 
correspond to different subhyperovals. There are 704 elements of 5 p on 
each point of A. So there is the same number of subhyperovals on each 
point of (2. By (ii), each of those subhyperovals has either 126 or 162 
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points. Counting in two ways the number of incident point-subhyperoval 
pairs, we have 

704 112[ = 162a + 126(2752 - a), (1) 

where a denotes the number of 162-point subhyperovals of 12. 
Next, note that there are 176 elements of 5 p on any pair of noncollinear 

points of A. Hence each pair of noncollinear points of 12 is contained in the 
same number of subhyperovals. Counting in two ways the number of the 
pairs "pair of noncollinear points within a subhyperoval", we have 

176 1121 ([121 - 166) = 162.116a + 126 • 80 (2752-a ) .  (2) 

Since the system of equations (1)-(2) does not have any nonnegative 
integral solutions, 12 does not exist. | 

4. EXTENSIONS OF H5(4 ) 

Here we complete the proof  of Theorem 1.1. It follows from Proposi- 
tion 3.1 and the following result. 

PROPOSITION 4.1. Let F be an extension of  A ~ H5(4 ). Then F is the 
extended polar space for Fi22. 

Proof It follows from Propositions 3.1(ii) and 2.4 that F is triangular. 
So F can be recovered from its point graph, cf. [6] .  For  simplicity, we 
denote the point graph of F by F. 

For  a point u ~ ( F ) ,  denote by F2(u) the set of points at distance 2 
from u. For  each x ~ u ± - { u } ,  [x±~Fz(u)l=512. For each v~F2(u), 
lu ± c~v±l = 126 or 162, cf. Proposition 3.1(ii). Counting in two ways the 
number of edges between u ± and F2(u), we see that there exists v e F2(u ) 
such that ]u±c~ v a] = 126. Indeed, otherwise, for any x E u ± -  {u}, 

I rz (u ) l  = lu ± -  {u}[ ,  Ix ± n F2(u)]/162 = 693. 512/162, 

which is a non-integer. 
Let w ~ v ± - u  ± - {v}. The subgraph induced by {u, v, w} ± is isomorphic 

to the 2-ctique extension q5 of the collinearity graph of GQ(2, 2), cf. [ 19, 
Lemma 2.80)]. Thus the hyperovals u ± c~ v" and u ± c~ w ± must intersect in 
a subgraph isomorphic to q~. A computer search shows that ]u±c~ w']  ¢ 
162. By [19, Lemma 2.10 ], {u, v, w} ~= {u, v, w'} ± implies w=w'  for 
W p ~ I )  ± - - b / ± .  

Let ~ be the graph defined on the 126-point hyperovals of A, such that 
two vertices 12, 12' are adjacent iff £2 c~ 12' --- ~b. By [ 19, Lemma 2.11 ], Z has 
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three connected components S', ~" and 2"', each of size 1408 and valence 
567. They are permuted by automorphisms of A. Since Iv ± - u  ± -  {v}]= 
567, the connected component A containing v of the subgraph of F 
induced on Fa(u) is a cover of Z'. By counting the edges between u ± and 
Fz(u), the index of this cover is at most 2. Since # (3 ' )=216 ,  a number 
bigger than the size of a hyperoval of A, we find that N' N A. So A is a 
2-fold cover of 3'. 

Continuing as in [19, Sect. 2.3] (that is by observing that F is a triple 
graph and recovering the 3-transposition group associated which it), it 
follows that F is the example related to Fi22. 

Alternatively, note that we have shown that IF(x, y)[ = 126 for any two 
vertices x, y at distance 2. Since all the hyperovals of Hs(4) of size 126 are 
of the same type (cf. Proposition 3.1(ii)), they must be isomorphic to the 
particular type of the hyperovals appearing in the Fizz-example. Therefore 
the condition on C4-subgraphs of F in [ 19, Theorem 1.1 ] holds, and so F 
is indeed the Fi22-example. 

5. NEW EGQ(4, 1) A N D  EGQ(4, 2) 

Here we describe new extended generalized quadrangles constructed as 
hyperovals of a polar space A. A computer-free proof of the existence of the 
162-point EGQ(4, 2) is given. We slightly abuse notation by sometimes 
identifying the hyperoval with the respective EGQ and/or with the point 
graph of this EGQ. 

A = Q[(4).  There are two types of hyperovals. They give two non- 
isomorphic EGQ(4, 1). The first one, with 72 points, is isomorphic to the 
one in [7, Example 9.15(iii)]. Its automorphism group is of order 28800 
and it acts flag-transitively. The second one, with 96 points, is apparently 
new. Its automorphism group is of order 3200 and it has two orbits on 
points of length 16 and 80, respectively. The distribution diagrams with 
respect to a point (see [3])  are different for points from different orbits. 
The diameter of the point graph is 3. 

A =/ /5(4  ). There are two types of hyperovals. They give two non- 
isomorphic EGQ(4, 2). The first one, with 126 points, is well-known. See 
e.g. [7, Example 9.9(b)(ii)], [ 19]. 

A hyperoval H of the second type has 162 points. The automorphism 
group of H is isomorphic t o  ( 3 4 : $ 6 )  . 2, and it is not flag-transitive 
(namely, there are two edge orbits). We show its existence without a 
computer. 

LEMMA 5.1 (A. E. Brouwer and H. Cuypers). There exists a pair of 
126-point hyperovals 3 and 3' intersecting in a 45-point Fischer subspace 
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of -7. The symmetric difference H of -7 and -7' is a 162-point hyperoval 
of  A. 

Proof The first part of the statement easily follows from [19, 
Lemma 2.3(2)]. Let us turn to the second part. 

Let -7 be a 126-point hyperoval of A. It has Fischer subspaces S of size 
45 (in the natural orthogonal description of -7, where the points are 
(+)- type points of the 6-dimensional GF(3)-space equipped with a non- 
degenerate symmetric bilinear form with discriminant 1, adjacency coin- 
cides with perpendicularity, and each S consists of the points orthogonal to 
a given isotropic point). Pick one such S. There are exactly three 126-point 
hyperovals intersecting in & see [19, Lemma2.3].  Pick any two of them, 
say ,7, -7'. We claim that the subgraph H induced on the symmetric 
difference of the pointsets of -7 and -7' is a hyperoval. 

Let xE-7--S,  and let l be a line of A on x. Let {x, y} = l  n-7. Assume 
first that y e S .  Then l ~ - 7 ' =  {x', y}, so I n i l =  {x,x '} ,  as required. 

It remains to show that in the case y e S - S  we have I c~ -7' = ~ .  By 
[18, Lemma2.1(iv)],  the subgraph of the point graph of A induced on 
x ± n S  is isomorphic to the point graph ~Y of GQ(2,2). By [19, 
Lemma 2.8(1)], the subgraph of the point graph of A induced by x ± n - 7 '  
is isomorphic to the 2-clique extension of T. Thus if a line on x intersects 
-7' then it intersects S, and we are in the case already considered. ] 

Note that the 126-point hyperovals and the sets S described above are 
Fischer subspaces of A, and they are related to near subhexagons of 
Hs(4)-dual polar space, see [2]. The proof of the lemma given by Andries 
Brouwer used a technique developed in [2]. The proof just given seems to 
be a streamlined version of Brouwer's proof. 

Next, we give two other descriptions of H. The first one is the author's 
description communicated to Andres Brouwer. Let A be the incidence graph 
ofa  PG(6, 6, 2) defined on [3, p. 373] (Van Lint-Schrijver PG). Note that A 
is not distance transitive. Let u be a vertex of A. A3(u) is split into the two 
orbits A ~(u) and A2(u) of lengths 60 and 15 respectively. A4(u ) is split into the 
two orbits An(u ) and A](u) of lengths 20 and 30 respectively. To obtain the 
point graph of H, one has to choose as the set H(u) the union of A~(u) and 
AZ(u), and then apply Aut(A) to get all the remaining edges. 

Andres Brouwer (personal communication) also gave the following 
elegant description of H. Let 

f (x ,  y) = x, y2 + ... + xd y~ 

be the Hermitian form defining A. Then, without loss of generality, the 
points of H are the points of A such that the product of the coordinates lies 
in GF(4)kGF(2). 
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9 

6 

9 

12 121 

:4 5 

4~  30 

12 

F~G. 1. The distribution diagram of the 162-point EGQ(4, 2). 

Remark. Steven Linton (personal communica t ion)  computed,  using his 
vector enumerat ion program,  which implements his algorithms presented 
in [ 15], that  the fundamental  g roup  of  the 162-point EGQ(4, 2) is perfect. 
Hence the index of  any its proper  covers is at least 60, the order  of  the 
smallest perfect group. On  the other  hand, upper  bounds  on the number  of 
points in EGQ(s, t) given in [ 7 ]  show that  such big covers do not  exist. 
Thus the 162-point EGQ(4, 2) does not  have any proper  covers. 

Note  that  the 126-point EGQ(4, 2) has the triple cover, which is the only 
proper  cover, see [ 1, 17, 7 ]. 
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