<table>
<thead>
<tr>
<th>Title</th>
<th>Synthesis, characterization, self-assembly, and physical properties of 11-Methylbenzo[d]pyreno[4,5-b]furan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Xiao, Jinchong; Yang, Bo; Wong, Jen It; Liu, Yi; Wei, Fengxia; Tan, Ke Jie; Teng, Xue; Wu, Yuechao; Huang, Ling; Kloc, Christian; Boey, Freddy Yin Chiang; Ma, Jan; Zhang, Hua; Yang, Hui Ying; Zhang, Qichun</td>
</tr>
<tr>
<td>Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/9482</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Organic Letters, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/ol2008186].</td>
</tr>
</tbody>
</table>

Jinchong Xiao,†‡ Bo Yang,†‡ Jen It Wong,‡ Yi Liu,‡ Fengxia Wei,† Ke Jie Tan,† Xue Teng,§ Yuechao Wu,† Ling Huang,§ Christian Kloc,† Freddy Boey,† Jan Ma,† Hua Zhang,† Huiying Yang,‡ Qichun Zhang†*

†School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); ‡College of Chemistry and Environment Science, Hebei University, Baoding, P. R. China; ‡Pillar of Engineering Product Development, Singapore University of Technology and Design, 287 Ghim Moh Road, Singapore 279623 (Singapore). §School of Chemical Biological and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore). qczhang@ntu.edu.sg

ABSTRACT

Synthesis, structure and physical properties of a novel 11-methyl-benzo[d]pyreno[4,5-b]furan (BPF) and its self-assembly in water have been reported. The performance of nanowire-based films in organic light-emitting diodes is much better than that of the thin film deposited by directly drop-coating BPF molecules in THF solution. SEM study indicates that the well-organized structure (nanowires) is an important factor in enhancing the performance of OLED devices.

Organic conjugated small molecules have received continuous attention because of their wide applications in organic electronic devices such as light-emitting diodes (OLED), field-effect transistors, and solar cells. In particular, OLEDs are being considered as future lighting tools to replace our current lighting system because of their high energy efficiency and longer life time. Moreover, the flexibility of organic materials, which can allow us to make all kinds of shapes (twisting, bending, and stretching) and can adapt themselves to any rough surfaces, makes them more promising in practical applications. In addition, one-dimensional self-assembly of these conjugated molecules has attracted increasing interest in organic electronics. The low stiffness and high elasticity of the organic-wire-based films endow the devices with the capability for large reversible deformation. Such devices are highly desirable for a broad range of applications.
because of their conformability, low stowed volume, and compatibility with low-cost impact resistance.

Pyrene and its derivatives have attracted considerable interest because they have high thermal stability, photoluminescence (PL) efficiency together with enhanced hole injection ability. More efforts have been made to synthesize new pyrene-based derivatives and to control their morphologies through the assistance of various weak interactions such as H-bonding, $\pi-\pi$ stacking, electrostatic interaction, and solvophobic effect. On the other hand, benzo[b]furan and its derivatives not only have interesting optical properties such as fluorescence and radioluminescence, but also are the core structural elements in natural and synthetic organic compounds. The integration of pyrene species and benzo[b]furan units into one molecule could generate a novel emitter with a new phenomenon for OLEDs. In this paper, we report the synthesis of a novel molecule 11-methyl-benzo[d]pyreno[4,5-b]furan (BPF, Scheme 1), self-assembly of BPF into nanowires, and their performance (both nanowires and molecules) in OLEDs.

The synthetic route of compound 11-methylbenzo[d]pyreno[4,5-b]furan (BPF) is described in Scheme 2. BPF was obtained as a light yellow solid in 36% yield by condensation reaction between pyrene-4,5-dione and 3-methylphenol in the presence of trifluoromethanesulfonic acid (Scheme 2). The novel compound BPF was fully characterized by FT-IR, 1H NMR, 13C NMR, MALDI-TOF, and HR mass spectrometers (Figure S1-S5 of Supporting Information). BPF is soluble in common organic solvents such as toluene, CH$_2$Cl$_2$, CHCl$_3$, THF, acetonitrile, methanol, and N,N-dimethylformamide. The self-assembled nanowires of BPF were obtained through reprecipitation by adding a THF solution of BPF into water containing poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) surfactant. The SEM and TEM studies of as-prepared nanowires have been performed and will be discussed in the following part.

Needle-like single crystals of BPF were obtained through physical transport sublimation. The crystal structure of BPF, displayed in Figure 1a, clearly shows that pyrene unit and benzo[b]furan part are in one plane, which is different from a previously reported twisted system from our group. Figure 1b presented a packing diagram for compound BPF. The interlayer face-to-face stacking was observed and the interplanar distance of BPF molecules was 3.40 Å, which indicates that there exists strong π-stacking in neighboring molecules.

The self-assembled BPF nanowires were characterized by SEM and TEM. As shown in Figure 2a, BPF readily forms nanowires by addition of a THF solution of BPF into an aqueous solution containing P123 block polymer as the surfactant. The as-prepared wires have the diameters in the range of 150-300 nm and lengths of 3-20 μm. The TEM study furthermore confirms the nanostructures’ morphology obtained from SEM. The selected area electron diffraction (SAED) pattern (Figure 2d) indicates that the as-prepared nanowires are crystalline. The crystallinity was furthermore confirmed by X-ray diffraction (XRD). As shown in Figure 2b, the XRD results was
indexed in space group C2/c with “standard” lattice constants (a = 49.52 Å, b = 4.861 Å, c = 40.62 Å and β = 116.289 °). Based on the XRD patterns of BPF nanowires and simulation, one can know that the obtained nanowires are single crystals and the preferential orientation is the (40̅) lattice plane.

The UV-vis and fluorescence spectra for BPF molecules in THF solution and nanowires in aqueous solution are shown in Figure 3. BPF in THF solution displays the absorption peaks at 340, 356, and 381 nm and the emission maxima at 380, 402, 425 and 460 nm (excited at 356 nm, Figure 3). Interestingly, the UV-vis absorption of nanowires becomes broad and dramatically red-shifted compared to that of BPF in THF solution, which is believed to come from J-type aggregation of BPF molecules. No surprisingly, the emission peaks are also red-shifted to 430, 458, 505, 542 nm, which further confirmed the formation of J-type aggregation. It should be noted that similar absorption bands and emission spectra were also observed in thin film (Figure S6, Supporting Information). The quantum yield of BPF molecules in THF and nanowires in aqueous solution were measured as 0.27 and 0.12, respectively, using 9,10-diphenylanthracene as the standard (0.95 in ethanol7a) at room temperature (excited at 356 nm). Note that the quantum yield of BPF nanowires was ~2 times less than that of BPF in THF solution.

FT-IR was performed to test the absence of P123 in nanowires (Figure S7, Supporting Information). Figure 4 shows EL spectra from the heterojunction LED of bulk and nanowires under a forward bias of 30.5 V. The structure of electroluminescent device is ITO/BPF bulk or nanowires/n-SiC/Ti/Au. The spectra were measured by connecting the cathode and anode of a constant voltage source to the ITO and Ti/Au metal contacts of the heterojunction, respectively. Light was collected from the surface of the ITO glass by an optical fiber to a PMT detector. It is found that the emission spectrum of nanowire-based LEDs can be fitted by four Gaussian curves with peak wavelengths at ~438, ~524, ~607 and ~668 nm (Figure S8a, Supporting Information), while the EL spectrum from bulk BPF shows a very broad emission which centered at a wavelength of ~583 nm (Figure S8b, Supporting Information). It was noted that no emission was observed from the heterojunction LED under a reverse bias, which suggested that a heterojunction is formed between the p-organic nanostructure and n-SiC. These EL spectra also show that the emission intensities in nanowires and bulk materials are highly different. The emission intensity of nanowires is approximately 50 times larger than that of bulk materials. The SEM study (Figure S9 of Supporting Information) on two films indicates that nanowire-based film has a better morphology than that of the thin film deposited by directly drop-coating BPF molecules in THF solution. This result demonstrated that morphology control is very important in the enhancement of the performance of heterojunction light emitting diode (LED) devices.

In conclusion, a new compound BPF and its self-assembled nanowires were successfully prepared. The single crystal structure shows that BPF is a conjugated plane molecule. Further investigation of the performance of the bulk state and nanowires in OLED devices suggested that the nanowire-based film does show better performance than that deposited through drop-coating
BPF molecules. This result could be helpful in optimizing the devices’ performance through control of their shapes.

ACKNOWLEDGEMENT

Q.Z. acknowledges financial support from Nanyang Technological University (start-up grant) and the AcRF Tier 1 (RG 18/09) from MOE.

SUPPORTING INFORMATION AVAILABLE

Synthetic and experimental procedures, spectral characterization data for BPF, and X-ray crystallographic data of BPF (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.
Reference

List of schemes

Scheme 1. Chemical Structure of Compound BPF.

Scheme 2. Synthetic Route of Compound BPF (1).
List of Figures

Figure 1. (a) Single crystal and (b) molecular packing of BPF. Carbon and oxygen atoms are colored in gray and red, respectively.

Figure 2. (a) FESEM image of self-assembled BPF nanowires. The inset shows a magnified typical nanowire. (b) XRD patterns of BPF nanowires (red line) and simulation from a single crystal’s structure (black line). (c) TEM image of BPF nanowires. (d) The SAED pattern of the single nanowire.

Figure 3. UV-vis absorption spectra of BPF in THF solution (a, black line) and BPF nanowires in aqueous solution (b, red line). Fluorescence spectra of BPF in THF (c, green line) and BPF nanowires in aqueous solution (d, blue line) with the excited wavelength at 356 nm.

Figure 4. EL spectra of BPF bulk or nanowire/n-SiC heterojunction LED biased at 30.5 V: (a) nanowire, (b) bulk state.
Scheme 1
Scheme 2

\[
\begin{align*}
\text{2} & \quad \text{180 °C} \quad \text{CF}_3\text{SO}_3\text{H, 36\%} \\
\text{3} & \quad \text{1} \\
\end{align*}
\]

Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4