<table>
<thead>
<tr>
<th>Title</th>
<th>Efficient tandem organic light-emitting device based on photovoltaic-type connector with positive cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Liu, Huihui; Yan, Fei; Wang, Hua; Miao, Yanqin; Du, Xiaogang; Jing, Shu; Gao, Zhixiang; Chen, Liuqing; Hao, Yuying; Xu, Bingshe</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/9883</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 American Institute of Physics. This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of American Institute of Physics. The paper can be found at the following official DOI: http://dx.doi.org/10.1063/1.4773591. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Efficient tandem organic light-emitting device based on photovoltaic-type connector with positive cycle
Huihui Liu, Fei Yan, Hua Wang, Yanqin Miao, Xiaogang Du et al.

Citation: Appl. Phys. Lett. 102, 013304 (2013); doi: 10.1063/1.4773591
View online: http://dx.doi.org/10.1063/1.4773591
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v102/i1
Published by the American Institute of Physics.

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Efficient tandem organic light-emitting device based on photovoltaic-type connector with positive cycle

Huihui Liu,1,2 Fei Yan,3,a) Hua Wang,1,2 Yanqin Miao,1,2 Xiaogang Du,1,2 Shu Jing,1,2 Zhixiang Gao,1,2 Liuqing Chen,1,2 Yuying Hao,1 and Bingshe Xu1,2

1Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
2Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
3LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

(Received 15 November 2012; accepted 14 December 2012; published online 7 January 2013)

We designed a tandem organic light-emitting device based on an organic photovoltaic-type charge generation connector (CGC) of fullerene carbon 60/copper(II) phthalocyanine. The CGC can absorb a portion of photons radiated from emission zone and form excitons which disassociated into free charges at PN junction interface without energy barrier, leading to low driving voltage and better charge balance. The efficiency increases remarkably with increasing current density, even beyond two folds compared with single unit device under higher current density, meaning slower roll-off. The whole process is a positive cycle, and actually enhances the utilization of internal radiation and the overall performance of tandem device.

Over the past twenty years, organic light-emitting devices (OLEDs) have been attracting more and more attentions and recently entering the era of industrialization. But as a new information display technology, OLEDs still meet a lot of difficulties need to solve, such as bi-exciton formation, polaron-exciton interaction, and Joule heating in conventional OLEDs, especially in the phosphorescent devices under high current density, which lead to a lower efficiency level and a shorter operational lifetime.1,2 Additionally, how to increase the light extraction efficiency has also always been an attractive topic, because, generally, in OLEDs only about 20% of radiation from recombination zone can be out-coupled, and the remaining 80% is wasted through waveguide mode, substrate mode, and surface plasmonic mode.3,4

Tandem OLEDs can be selected as an alternative to avoid such disadvantages mentioned above, because tandem OLEDs can offer the same luminance with much lower current density compared with single emissive unit device.5,6 As the key point of tandem OLEDs, the charge generation connectors (CGCs) actually were PN junctions structured with pristine or doped films. For P-type layers, the toxic transition metal oxides or p-type molecules, such as tungsten oxide (WO3), molybdenum oxide (MoO3), and doped 4,4'-4''-tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (m-MTDATA) were most used candidates.7-9 Most reported n-type layers were organic films doped with active metal such as lithium, cesium, and magnesium, which will diffuse into recombination zone and lead to emission quenching.7,8,10-12 Additionally, in order to reduce the wastage caused by the absorption of CGC in tandem OLED, usually used candidates were wide band gap materials, such as 4,7-diphenyl-1,10-phenanthroline (Bphen) and m-MTDATA.5,8,11-13

Obviously, the conventional pristine organic heterojunction CGCs are advantageous in handling and device stability. In this work, we thought outside the box and designed a special CGC which can absorb internal radiation partially but favors charge generation, leading to enhancement of the electroluminescence (EL) performance.

In our work, an organic photovoltaic (OPV) type combination of fullerene carbon 60 (C60)/copper(II) phthalocyanine (CuPc) was selected to constitute the CGC of tandem device. Additionally, in order to make the generated charges inject the adjacent emissive units more easily, at two sides of C60/CuPc CGC (see Fig. 1), we added p-type and n-type buffer layers which can modify the interface energy alignment. The p-type and n-type buffer layers are m-MTDATA doped with 2,3,5,6-tetrafluoro-7,7,8,8,-tetracyano-quinodimethane (F4-TCNQ) and 1,3,5-tris(1-phenyl-1 H-benzimidazol-2-yl) benzene (TPBi) doped with cesium carbonate.

FIG. 1. The schematic energy diagram of EL unit (left) and the structure of device II (right).
(Cs₂CO₃), respectively. In consideration of the absorption spectrum of CuPc, the red phosphorescent material bis(1-phenyl-isoquinoline)(acetylacetonato)iridium(III) (Ir(piq)₂acac) was selected as emission dopant.

The schematic energy diagram of EL unit and the structure of tandem device are illustrated in Fig. 1. Device I is the contrast device with single emissive unit, and device II is the tandem device with the CGC mentioned above. For the emission layer, we used a cohost composed of 4,4'-4,4'-tri-9-carbazolyltriphenylamine (TCTA) and TPBi with a 1:1 weight ratio (50 nm)/TCTA (10 nm)/TCTA:TPBi:Ir(piq)₂acac (7 wt. %, 20 nm)/TPBi:Cs₂CO₃ (10 wt. %, 20 nm)/Al (100 nm).

Device II: ITO/NPB (50 nm)/TCTA (10 nm)/TCTA:TPBi:Ir(piq)₂acac (7 wt. %, 20 nm)/TPBi (20 nm)/TPBi:Cs₂CO₃ (10 wt. %, 20 nm)/Al (100 nm), here NPB is 4,4'-4,4'-tri-9-carbazolyltriphenylamine (TCTA) and TPBi with a 1:1 weight ratio.

FIG. 2. Absorbance and transmittance spectra of 20 nm CuPc film and PL spectrum of TCTA:TPBi:Ir(piq)₂acac (7 wt. %, 30 nm) film deposited on quartz substrates.

FIG. 3. Plots of current density as a function of voltage of all devices.
density linearly, so under high current density the component of the light radiated from OLED increases and the influence of the light from LED lamp becomes relatively weaker. As shown in Fig. 3, as current density increases, the two I–V curves of device II with and without LED irradiation are getting closer.

From Fig. 5, it is noted that at low current density, the current efficiency of device II is a little higher (smaller than two times) than that of device I, while as current density increases, the current efficiency of device II increases faster below 1 mA/cm² and drops slower above 1 mA/cm² than that of device I. The maximum current efficiency of device II is larger by about two times than that of device I. This result is consistent with the general concept that the tandem OLEDs with two EL units show the current efficiency of about two times larger than the non-tandem OLEDs. This indicates that the present OPV-type layers work as CGC. As presented in inset of Fig. 5, the current efficiency ratio of the two devices increases monotonically with increasing driving current, even going beyond two folds. We thought that there should be two probable reasons which lead to such strange feature. First, at low current density, the charges were generated through charge transfer from CuPc HOMO to C60 LUMO, which need a high assistant electrical field, as shown in Fig. 4(b). The generated charges are too less to balance the charges injected from electrodes in recombination zone, leading to low current efficiency at last. Additionally, the ground state CuPc molecules absorb the photons radiated from emission zone, which further weaken the current efficiency. As current density and luminance increase, more and more CuPc molecules in CGC absorb photons radiated from Ir(piq)₂acac and form excitons, leading to the amount of generated charges through exciton dissociation at interface increases remarkably, resulting in better balance with charges injected from electrode in recombination zone. Second, under high current density, a large number of CuPc molecules were in the excited state after absorbing the photons radiated from Ir(piq)₂acac and could not absorb photons anymore, so the wastage caused by absorption of CuPc layer dropped to a negligible level. It is noted that such features of tandem device II are favorable to enhancing the contrast ratio of OLED display. Even though the CuPc molecules in CGC absorbed the photons radiated from Ir(piq)₂acac relaxation, the current efficiency of tandem device II was still higher than twice of single unit device I, thus, we thought the special tandem device actually use the 80% internal radiation which should be wasted through various channels in normal devices.

Based on the discussion above, the work process of tandem device II can be separated into two steps, as shown in Fig. 6. The first step is device startup process. Under electrical field assisting, the CGC generates charges which recombine with the charges injected from electrodes in recombination zone and eventually radiate photons. And then a portion of such photons are absorbed by ground state CuPc molecules in CGC and form excitons, which is actually to prepare for the second step—positive cycle process, meaning that the current efficiency at low current density is relatively lower. In the second positive cycle process at high current density, through CuPc excitons dissociation at C60/CuPc interface with no energy barrier, the CGC spouts a huge number of charges which recombine with the charges injected from electrodes in recombination zone and eventually radiate photons, and then a portion of such photons will be absorbed by relaxed CuPc molecules in CGC and form excitons again. In this cycle, a large number of CuPc molecules are excited, leading to a positive cycle process which increases the current efficiency.
molecules are in excited state, so the wastage caused by absorption of ground state CuPc molecules is negligible.

In our tandem device, although CuPc molecules absorb a portion of photons radiated from emissive zone, the current efficiency is still going beyond two times of single emissive unit device. Clearly, the special tandem device based on such OPV type CGC actually enhances the utilization of internal radiation and retards the current efficiency drop at high current density through a positive cycle process. This device model can be proposed as an alternative to enhance contrast ratio and overall performance of phosphorescence OLED.

This work was financially supported by Program for Changjiang Scholar and Innovative Research Team in University (IRT0972), International Science & Technology Cooperation Program of China (2012DFR50460), National Natural Science Foundation of China (21071108, 60976018, and 21101111), and Natural Science Foundation of Shanxi Province, China (2010021023-2).