<table>
<thead>
<tr>
<th>Title</th>
<th>Proposal for a bosonic cascade laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Liew, Timothy Chi Hin; Glazov, M. M.; Kavokin, K. V.; Shelykh, Ivan A.; Kaliteevski, M. A.; Kavokin, Alexey V.</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/9905</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 American Physical Society. This paper was published in Physical Review Letters and is made available as an electronic reprint (preprint) with permission of American Physical Society. The paper can be found at the following official DOI: http://dx.doi.org/10.1103/PhysRevLett.110.047402. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Proposal for a Bosonic Cascade Laser

T. C. H. Liew,1 M. M. Glazov,2,3 K. V. Kavokin,2,3 I. A. Shelykh,1,4 M. A. Kaliteevski,2,5 and A. V. Kavokin3,6

1Division of Physics and Applied Physics, Nanyang Technological University, 637371 Singapore, Singapore
2Ioffe Physical-Technical Institute of the RAS, 26, Polytechnicheskaya, St. Petersburg 194021, Russia
3Spin Optics Laboratory, St. Petersburg State University, 1 Ul’anovskaya, St. Petersburg 198504, Russia
4Science Institute, University of Iceland, Dunhagi-3, IS-107 Reykjavik, Iceland
5St. Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
6University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

(Received 11 May 2012; revised manuscript received 15 November 2012; published 25 January 2013)

We propose a concept of a quantum cascade laser based on transitions of bosonic quasiparticles (excitons) in a parabolic potential trap in a semiconductor microcavity. This laser would emit terahertz radiation due to bosonic stimulation of excitonic transitions. The dynamics of a bosonic cascade is strongly different from the dynamics of a conventional fermionic cascade laser. We show that populations of excitonic ladders are parity dependent and quantized if the laser operates without an external terahertz cavity.

DOI: 10.1103/PhysRevLett.110.047402 PACS numbers: 78.67.Pt, 78.45.+h, 78.66.Fd

Quantum cascade lasers (QCLs) are based on subsequent intersubband transitions of electrons or holes in a Wannier-Stark ladder formed in a semiconductor superlattice subject to an external electric field [1–3]. Emitted Wannier-Stark ladder formed in a semiconductor superlattice intersubband transitions of electrons or holes in a quantum well embedded. We consider the weak coupling regime where the optical mode is resonant with the mth exciton level to allow efficient pumping. The other energy levels of the confined excitons would be uncoupled to the cavity mode, forming a dark cascade ideal for a high quantum efficiency device due to the long radiative lifetime. This device would emit radiation polarized in the direction normal to the quantum well plane and propagating in the cavity plane in the waveguiding regime. In this Letter, we formulate a kinetic theory of bosonic cascade lasers and carry out a microscopic calculation of the transition rates and quantum efficiency of such a device. We show that the quantum efficiency is at least 3 orders of magnitude larger than previous designs based on stimulated emission [4] and several orders of magnitude larger than the corresponding fermionic cascade.

The occupation numbers of exciton quantum confined states and the THz optical mode in our cascade laser can be found from the following set of kinetic equations (0 is the state with the lowest energy, and m is the state with the highest energy, which is resonantly pumped):

\[
\frac{dN_m}{dt} = \frac{P - N_m}{\tau} - WN_m(N_{m-1} + 1) + W'N_{m-1}(N_m + 1),
\]

(1)

\[
\frac{dN_k}{dt} = -\frac{N_k}{\tau} + W[N_{k+1}(N_k + 1) - N_k(N_{k-1} + 1)]
+ W'[N_{k-1}(N_k + 1) - N_k(N_{k+1} + 1)]
\quad \forall \ 1 \leq k \leq m - 1,
\]

(2)

\[
\frac{dN_0}{dt} = -\frac{N_0}{\tau} + WN_1(N_0 + 1) - W'N_0(N_1 + 1).
\]

(3)
Here, \(W = W_0(n_{\text{THz}} + 1) \) is the THz emission and \(W' = W_0n_{\text{THz}} \) is the THz absorption rate, \(n_{\text{THz}} \) is the THz mode occupation, and \(\tau_{\text{THz}} \) is the THz mode lifetime. The lifetime of the cascade levels, \(\tau \), should include both their radiative lifetime and their nonradiative lifetime, which includes losses due to phonon scattering to states with a nonzero in-plane wave vector, \(k_\parallel \neq 0 \). Above a threshold pump power, it is not necessary to calculate explicitly the dynamics of these states. We note that any phonon or exciton-exciton scattering to states with \(k_\parallel \neq 0 \) would not be stimulated, and any population in a particular subband can be expected to return to the \(k_\parallel = 0 \) state of the same subband by stimulated scattering. Phonon assisted relaxation between subbands is also expected to have a limited rate \([12]\). We assume that the matrix element of the THz transition is (i) nonzero only for neighboring stairs of the cascade and (ii) the same for all neighboring pairs. This simplifying assumption allows for the analytical solution of Eqs. (1)–(3). As we show below, condition (i) is approximately true for parabolic wells, while assumption (ii) can be easily relaxed in the numerical calculations.

We first consider the case where there is no THz cavity and assume that THz photons leave the system immediately such that \(n_{\text{THz}} = 0 \). The solid curves in Fig. 1 show the dependence of the mode occupations on the pump power in this case, which were calculated by numerical solutions of Eqs. (1)–(3) for the steady state. For increasing pump power, we see that the modes become occupied one by one and that a series of steps appears, each corresponding to the occupation of an additional mode. In the limit \(W_0\tau \ll 1 \), the position of the steps is given by \(P/W_0 = n^2/(W_0\tau)^2 \), where \(n \) is a half-integer. For high pump powers, where all modes are occupied, two different behaviors of the modes can be identified: the zeroth, 2nd, 4th, etc. modes continue to increase their occupation with increasing pump power, while the 1st, 3rd, 5th, etc. modes have a limited occupation. This effect persists independently of whether an even or odd number of modes is considered in the system.

Qualitatively, our results can be understood as follows. Every mode in the chain experiences both a gain and a loss. The last mode in the chain is unique since it only experiences loss due to the finite lifetime rather than THz emission. Since it experiences loss only due to the lifetime, we can expect that the last mode is strongly occupied in the limit of high pump power. This means that the second-to-last mode experiences a strong loss due to stimulated scattering to a highly occupied state. Thus, the second-to-last mode has a much smaller occupation. The third-to-last mode then experiences only a small loss due to stimulated scattering and so can again have a large occupation. The series repeats such that alternate modes have high and low intensity, with the highly occupied modes introducing a fast loss rate that limits the occupation of low intensity modes.

Quantitatively, Eqs. (1)–(3) can be solved analytically in the steady state, where \(\sum N_k = P/\tau \), under the assumption that \(W_0\tau \ll 1 \), \(N_m \gg 1 \), and \(n_{\text{THz}} = 0 \). In this regime, \(N_0 \) and the populations of modes with even indices grow linearly with the pump intensity \([13]\):

\[
N_{2l} = N_0 + \frac{l}{W_0\tau} \quad \forall \ 0 \leq l \leq [(m - 1)/2].
\]

The populations of the odd modes are

\[
N_{2l-1} = \frac{l}{W_0\tau} \quad \forall \ 0 \leq l \leq [m/2].
\]

Results from Eqs. (5) and (6) are compared to the numerical results in Fig. 1. We stress that the dependence of the mode occupations on the parity of the level index is a specific feature of bosonic systems that does not appear in the corresponding fermionic cascade \([13]\).

It is also possible to write an equation for the THz emission rate:

\[
\frac{dn_{\text{THz}}}{dt} = W_0 \sum_{k=1}^{m} N_k(N_{k-1} + 1) - W' \sum_{k=1}^{m} N_{k-1}(N_k + 1).
\]

Results from Eq. (7) are compared to numerical calculation of the THz emission rate in Fig. 2(a). For high pump powers, the rate increases linearly with the pump power. This represents a limit to the quantum efficiency of THz emission, which is given by the THz emission rate divided by the pump rate, \(P \), and plotted in Fig. 2(b). The presence of the bosonic cascade allows quantum efficiencies exceeding unity and several orders of
beyond the limit of lifetime can increase the quantum efficiency, however, not the THz photon lifetime. An increase of the THz photon rates are observed than in Fig. 2(a). Figure 4(b) shows the lifetime. For fixed pump intensity, higher THz emission the THz emission rate as a function of the THz photon a THz cavity.

Let us now demonstrate the feasibility of THz transitions between the size-quantized levels of excitons in a parabolic quantum well. The two-particle Hamiltonian for an electron and a hole reads

$$\mathcal{H} = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial \mathbf{p}^2} - \frac{e^2}{\epsilon \rho} - \frac{\hbar^2}{2M} \frac{\partial^2}{\partial \mathbf{R}^2} + V(z_e, z_h).$$ \hfill (8)

Here, $M = m_e + m_h$, $\mu = m_m h/M$ is the reduced mass of the electron-hole pair, $\mathbf{r} = r_e - r_h = (x, y, z)$ is the relative coordinate, $\mathbf{R} = (m_c r_e + m_h r_h)/M = (X, Y, Z)$ is the center-of-mass wave vector, and ϵ is the background dielectric constant. The quantum well potential $V(z_e, z_h)$ is written in the form $V(z_e, z_h) = A_c z_e^2 + A_h z_h^2$, where constants $A_{c,h}$ denote corresponding stiffness. It is convenient to rewrite $V(z_e, z_h)$ as a function of the center of mass Z and relative motion z coordinates with the result $V = V_0(Z, z) + V_1(Z, z)$, where $V_0(Z, z) = (A_c + A_h)Z^2 + (A_h m_e^2 + A_c m_h^2)/M^2$ does not mix center-of-mass and relative motion and

$$V_1(Z, z) = \frac{2}{M} (m_h A_c - m_c A_h) Z z.$$ \hfill (9)

FIG. 3 (color online). Same as in Fig. 1 with a THz cavity. $\tau_{THz} = \tau/100$.

So far, we have considered the stimulated emission of monochromatic but incoherent THz photons. To generate coherent THz photons, an external THz cavity can be considered, where macroscopic numbers of THz cavity photons allow further stimulated enhancement of scattering between the modes. In this case, where upward transitions are allowed in addition to downward ones, the steps observed in Fig. 1 are washed out, as shown in Fig. 3. In contrast to Fig. 1, all modes continue to increase their population with increasing pump power. Figure 4(a) shows the THz emission rate as a function of the THz photon lifetime. For fixed pump intensity, higher THz emission rates are observed than in Fig. 2(a). Figure 4(b) shows the dependence of the THz emission quantum efficiency on the THz photon lifetime. An increase of the THz photon lifetime can increase the quantum efficiency, however, not beyond the limit of $m/2$ already observed in the absence of a THz cavity.
mixes internal and center-of-mass degrees of freedom, provided that \(m_e A_e \neq m_h A_h \).

In what follows, it is assumed that the potential is weak enough; hence, in the zeroth approximation, the center of mass can be quantized independently and zeroth order wave functions have the form

\[
\Psi_{n,l,m,b}(r_e, r_h) = R_{nlm}(\rho) Y_{lm}(\theta, \varphi) F_b(Z),
\]

where \(F_b(Z) \) are the eigenfunctions of the center-of-mass potential \(V(Z) = (A_e + A_h)Z^2 \), \(h \) enumerates levels in this harmonic potential, \(R_{nlm}(\rho) \) are the 3D-hydrogen-like radial functions, and \(Y_{lm}(\theta, \varphi) \) are (3D) the angular harmonics of relative motion. \(n, l, m \) are the quantum numbers of relative motion of an electron and a hole.

Let us consider the case when the energy of the 2\(p \) to 1\(s \) transition of orbital states is matched to the level spacing, \(h\Omega \), of the center-of-mass wave functions in the trap [note that \(V_1 \) may still be small due to compensation of \(A_e \) and \(A_h \) terms in Eq. (9)]. The eigenstates of the bosonic cascade can then be written as

\[
|\pm, h\rangle = \frac{|1, 0, 0, h\rangle \pm |2, 1, 0, h - 1\rangle}{\sqrt{2}},
\]

where the states are labeled as \(|n, l, m, h\rangle \). Dipole transition elements between the two eigenstates at each level in the cascade and those \(h\Omega \) lower in energy are given by

\[
|\langle \pm, h - 1|\langle ex|\pm, h\rangle| = \frac{e}{2}\frac{1}{2} \langle 1, 0, 0, h - 1|\langle x|2, 1, 0, h - 1\rangle = \frac{64\sqrt{2}}{243} e a_0,
\]

where the numerical factor arises from known matrix elements of transitions in the harmonic oscillator and the hydrogen atom [14,15]. For simplicity, we assume that the populations of \(|\pm, h\rangle \) and \(|\mp, h\rangle \) states in the cascade are equal. The transition rates between different energies in the cascade are then given by the transition rate corresponding to Eq. (12) multiplied by a factor of 2. Following Ref. [4], the transition rate between levels is \(W_0 = 1700\text{s}^{-1} \), where we took \(a_0 = 100\text{Å} \) and a refractive index of 3 corresponding to a GaAs based system. The 2\(p \) to 1\(s \) transition energy was calculated from \(E_{np} = E_{ns} = -\mathcal{R}/n^2 \), where \(\mathcal{R} = 5\text{ meV} \). Taking \(\tau = 500\text{ ps} \), we then have \(W_0\tau = 8.3 \times 10^{-7} \).

We have neglected any energy splitting of the eigenstates \(|\pm, h\rangle \), which is valid if the coupling energy given by \(V_1 \) is less than the inhomogeneous broadening of the system. Note that the \(|\pm, h\rangle \) still the unique eigenstates of the system, provided that the coupling energy exceeds the decay rate given by the exciton lifetime.

To best characterize the specific case of a parabolic trap with electron-hole mixing, we have also considered the effects of higher order transitions [13] caused by the mixing of states by \(V_1(Z, z) \). Dipole transitions between next-nearest-neighbor levels are forbidden; however, third order transitions between next-next-nearest-neighbor levels are possible [13]. In addition, we have considered the effect of exciton-exciton scattering processes [13]. The results are summarized in Fig. 5. The exciton-exciton interactions can greatly smooth the quantized steps, while the influence of first and third order transitions may distort the differences in populations of neighboring levels. However, the parity dependence can still be observed as nontrivial oscillations of the level populations with increasing power.

Furthermore, high quantum efficiencies, exceeding unity, are still possible [13] due to the weakness of third order transitions and the fact that exciton-exciton pair scattering conserves energy. Note, the number of THz photons that a pair of excitons can emit before reaching the ground state is unchanged even if exciton-exciton scattering takes place.

Finally, we note that the wave guiding geometry can increase the active volume of the laser and, consequently, the output power. Its drawback is a larger size compared to the vertical cavity laser geometry. Lateral traps would allow a more compact size of the device, while the matrix elements of terahertz transitions are believed to be larger in parabolic quantum wells.

In summary, we proposed the use of a bosonic cascade to implement THz lasing with high quantum efficiency, above unity. Such a device requires a parabolic trapping that can be arranged in the plane of a semiconductor microcavity via a variety of techniques or using parabolic wide quantum wells. The THz transition matrix elements were calculated, making use of possible resonance between the level spacing of center-of-mass wave functions and the 2\(p \) to 1\(s \) transition energy. A series of steps in the mode occupations of the bosonic cascade was predicted for increasing pump power, which remain as visible oscillations in the presence of exciton-exciton scattering and third order transitions.

This work has been supported by the EU IRSES projects “POLAPHEN” and “POLATER.” I. A. S. acknowledges the support from Rannis “Center of Excellence in Polaritronics.” M. M. G. was partially supported by the RFBR and RF President Grant No. NSh-5442.2012.2. M. A. K. acknowledges the RFBR.