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Using Keldysh-Green function formalism we theoretically analyzed the dynamics of multimode exciton-
polariton Josephson junctions. We took into account the spinor nature of polaritons and considered in detail the
role of coupling of the fundamental modes with excited states. We demonstrate that the coupling to the reservoir
results in a change of the oscillation pattern. In particular, it can lead to renormalization of the oscillation
frequency, appearance of higher order harmonics, and induce transition between the regimes of free Josephson
oscillations and macroscopic quantum self-trapping.
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I. INTRODUCTION

After the theoretical prediction1 and the experimental
detection2 of Josephson tunneling between two supercon-
ductors separated by a thick insulator under the application
of an external voltage, analogous quantum oscillations were
found between two vessels of superfluid helium connected by
a nanoscale aperture.3 Later on, a similar type of dynamics
was described and observed between two weakly coupled
cold atoms Bose-Einstein condensates (BECs) created in a
double-trap potential.4,5 Differently from the superconductors
and superfluid helium case, the Josephson effect for cold atoms
is strongly affected by interparticle interactions.4 Anharmonic
behavior occurs in these systems additionally to common
Josephson oscillations. One of the most impressive and special
phenomena arising in this system is the macroscopic quantum
self-trapping (MQST).6 If the interaction energy is at least four
times larger than the tunneling constant, an initial population
imbalance rises the energy in one trap with respect to the
other, which suppresses the tunneling current.6 Bosons do
not oscillate anymore from one well to the other, remaining
trapped, where they have been initially introduced.

In the so-called Josephson regime, which allows for a mean
field classical description of the condensate wave function, the
Bosonic Josephson junction (BJJ) is described by the well-
known classical Hamiltonian:

H = H0[z(0),θ (0)] = �
z(t)2

2
− cos θ (t)

√
1 − z(t)2, (1)

written in terms of population imbalance z(t) = [N1(t) −
N2(t)]/[N1(t) + N2(t)], where N1 and N2 are populations
in trap one and trap two, and the phase difference θ (t)
between BECs. A two-mode approximation including only
the lowest energy states of a symmetric double-trap is used
in the Hamiltonian (1)6 which contains a single dimen-
sionless parameter � = U0NT /2J . In the last expression J

figures as Josephson coupling equal to half of the energy
splitting between symmetric and antisymmetric states of the

double-trap potential in the linear regime. NT is the total
population of particles in both traps which interact with
characteristic constant U0.

Inspecting the phase-space diagram (z,θ ) of the Hamil-
tonian (1), one can observe two distinct regions separated
by a separatrix line H = 1 (full/red contour in Fig. 1). The
value of H in (1) can be set by choosing the initial conditions
z(0) and θ (0). A delocalized regime will establish if H < 1.
It is characterized by the population imbalance being zero
on average [〈z(t)〉 = 0] and corresponds to cyclic motion on
closed orbits (see Fig. 1). Approaching the separatrix from the
inner side one starts to deviate from regular circles because
of the increasing effect of nonlinearity. Outside the separatrix,
where H > 1, the population imbalance evolves along open
lines with small oscillations around a constant mean value
〈z(t)〉 = const indicating the transition to the MQST regime.

In addition to cold atomic gases there are also a few solid
state systems in which different quasiparticles when being
cooled down at low temperatures form an ordered macroscop-
ically occupied quantum state. One of these systems is the
cavity exciton-polariton (polariton) gas. Polariton condensa-
tion was observed several years ago in CdTe microcavities at
about 20 K.7,8 The condensation of polaritons also takes place
in GaAs-,9,10 GaN-,11,12 and ZnO-based13 microcavities, in the
two latter cases even at room temperature. The possibility of
creating BEC under such conditions is extremely interesting
from a fundamental point of view. Besides, it opens a
way for the design of optoelectronic components, such as
polariton lasers14 and various devices exploiting polariton
superfluidity.15

Polaritons are two-dimensional quasiparticles that appear
due to the strong coupling of excitons in semiconductor
quantum well(s) and photons confined within a microcavity
structure.16,17 Peculiar properties of exciton polaritons are
consequences of their hybrid, half-light half-matter nature
coming from photonic and excitonic constituents respectively.
In particular, their ultra-small effective mass, which is typically
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FIG. 1. (Color online) Hamiltonian (1) in the phase space (z,θ )
for � = 8. Contour lines for H = 0, 1, 2, and 3 are labeled. Separatrix
is shown with full/red line.

four or five orders of magnitude less than the free electron
mass, makes quantum collective phenomena extremely pro-
nounced even at high temperatures (transition to BEC phase
is one of the examples). On the other hand polaritons inherit
from their excitonic part strong interparticle interactions.

Another prominent feature of polaritons is that the total
angular momentum of the polariton state along the structure
growth axis (chosen as z direction) J

pol
z can take two values

(J exc
z = ±1).18 The two values of J

pol
z = ±1 (usually referred

to as the polariton pseudospin) correspond to mixing of bright
excitons (J exc

z = ±1) and photons with right or left circular
polarizations.

Dark excitons with J exc
z = ±2 are uncoupled from cavity

mode due to optical selection rules and thus do not contribute
to the formation of a polariton doublet. From the point of
view of spin, a polariton is thus a two level system equivalent
to an electron or to a photon. Consequently one can apply
the pseudospin formalism for the description of the spin
dynamics of polaritons. It is convenient to represent the
pseudospin state of a polariton system by a point on the
Poincaré sphere (also known as Bloch sphere). Importantly,
polariton pseudospin unambiguously defines the polarization
state of the photoemission from the cavity. The states lying
at the poles of the Poincaré sphere correspond to circular
polarization of polaritons, the states on the equator to linear
polarizations, and all other states to elliptical polarizations.

Being interacting bosons, exciton polaritons can be used to
realize a Bosonic Josephson junction. Polaritonic Josephson
junctions (PJJs) were considered theoretically in Refs. 19–21
and experimentally in Refs. 22 and 23. Except for Ref. 23,
polariton pseudospin was neglected in these works, and
only Josephson coupling between the polaritons located in
spatially separated traps was included. The introduction of
the polarization degree of freedom makes Josephson dy-
namics far more rich. Indeed, in addition to the coupling
between states localized in different traps, two polariza-
tion states in a single asymmetric trap can be coupled
as well, by a mechanism analogous to TE-TM splitting.24

Josephson-type oscillations can occur between different po-
larizations, a phenomenon which is called intrinsic Josephson
effect.25 Interplay between intrinsic and extrinsic Josephson
dynamics can lead to dynamical separation of different
polarizations in real space and other intriguing phenomena.25

The system of coupled polariton BECs, with their polariza-
tion degree of freedom included, is formally similar to binary
mixtures of cold atoms condensates in double-trap potentials.
There have been several works on the last topic (Refs. 26–30).
The principal mechanism of coupling in binary mixtures is
due to atomic-atomic scattering of different species, a process
which is nonlinear as opposed to pseudospin coupling in
polaritonic condensates, which is a linear process resulting
in intrinsic Josephson oscillations.

The role of polarization coupling in PJJ was studied for
several configurations.31–33 In most of them, the so-called
two-mode approximation was applied, in which only the two
lowest levels, one in each of the traps, were considered.
In Ref. 33 several modes were included in order to study
damping of Josephson oscillations due to the interactions of
polaritons with acoustic phonons. However, in this case the
separation between two fundamental modes and excited ones
was considered to be much greater than characteristic values
of blueshifts provided by polariton-polariton interactions, and
the transitions to excited modes were only possible due to
absorbtion of phonons.

In this paper we analyze multimode PJJs with confining
potential created in such a way that interactions between the
lowest and excited levels are not negligible, which is indeed
the case in experimental realizations.23 This kind of coupling
has already been considered for Josephson junctions based on
atomic BECs.34 Our goal is to extend the analysis of Ref. 34
for the case of cavity polaritons accounting for the polarization
degree of freedom, and clarify the effects of the coupling
between the fundamental and excited modes on nonlinear
polarization dynamics in PJJs.

II. MODEL

In Ref. 34, the Keldysh-Green functions technique was
employed to study the dynamics of the BJJ with multimode
structure. Here we shall follow a similar approach for the
description of PJJs with the spin degree of freedom. Because
of the spinor nature of polariton condensate in addition to usual
Josephson coupling, we have to also consider the coupling
between polarization components within different modes of
the external potential.

We start by expanding the exciton-polariton field operators
�̂σ±(r,t) over the complete set of eigenstates {f1,f2, . . .} of
the double-well potential

�̂σ±(r,t) = f1(r)â1σ±(t) + f2(r)â2σ±(t) +
∞∑

n=3

fn(r)b̂nσ±(t).

(2)

In the last series â1σ± and â2σ± denote the annihilation
operators for the lowest modes localized in the traps one and
two. The same quantities in the excited level n are b̂nσ± with
σ± indicating the circular polarization of the state.
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The system under study is described by the Hamiltonian
being the sum of three terms:

Ĥ = Ĥσ+ + Ĥσ− + Ĥσ+σ− . (3)

The spin conserving terms Ĥσ+ and Ĥσ− are given by the
following expressions:

Ĥσ± =
∫

d2r�̂
†
σ±(r,t)

[
− h̄2

2m
� + Vext(r,t)

]
�̂σ±(r,t)

+ 1

2

∫
d2r

∫
d2r

′
�̂+

σ±(r,t)�̂†
σ±(r

′
,t)V (r,r

′
)

× �̂σ±(r
′
,t)�̂σ±(r,t), (4)

where m is the effective mass of the polaritons and Vext(r,t)
the double-well potential. V (r,r

′
) = gδ(r − r

′
) is a contact

type interaction described by delta function. The interaction
constant can be estimated as g ≈ EBa2

B , with EB and aB being
the exciton binding energy and Bohr radius, respectively.35

The last term in Eq. (3) accounts for the Josephson-
type coupling between particles having opposite pseudospin
projections. It can be viewed as the result of the presence
of an effective in-plane magnetic field �(r) arising from the
asymmetry of the structure24 and acting on the polaritons
pseudospins. It can be represented as

Ĥσ+σ− =
∫

d2r�̂
†
σ±(r,t)�(r)�̂σ∓(r,t). (5)

After substitution of the expansions (2) into the Hamiltoni-
ans (4) and (5) the Hamiltonian (3) can be recast as

Ĥ = Ĥ 0 + Ĥ exc + Ĥ int. (6)

The first term describes the dynamics of the four fundamental
modes (including the polarization degree of freedom), the
second term describes the dynamics of the delocalized excited
modes, and the last term corresponds to the coupling between
the fundamental and excited modes. These terms read:

Ĥ 0 = E0

∑
i;σ

â
†
iσ âiσ + J0

∑
σ

(â†
1σ â2σ + â

†
2σ â1σ )

+ U0

2

∑
i;σ

â
†
iσ â

†
iσ âiσ âiσ + �0

∑
i;σ

â
†
iσ âi−σ ; (7)

Ĥ exc =
∑
n,m;σ

(En + Unm〈b̂†mσ b̂mσ 〉)b̂†nσ b̂nσ

+
∑
n,m;σ

Unm

2
(〈b̂†mσ b̂†mσ 〉b̂nσ b̂nσ + H.c.)

+
∑
n;σ

�nb̂
†
nσ b̂n−σ ; (8)

Ĥ int =
∑
i,n;σ

Kn

[
1

2
(â†

iσ â
†
iσ b̂nσ b̂nσ + H.c.) + 2â

†
iσ âiσ b̂†nσ b̂nσ

]

+
∑
n;σ

2Jn(â†
1σ â2σ + â

†
2σ â1σ )b̂†nσ b̂nσ

+
∑
n;σ

Jn(â†
1σ â

†
2σ b̂nσ b̂nσ + H.c.). (9)

In the above expressions En are the energies of the
modes, J0 is the Josephson coupling strength between the
fundamental modes localized in the right and in the left trap of
double-well potential, �n are the coupling strengths between
states of different polarizations at level n, which leads to the
intrinsic Josephson effect, U0 describes the polariton-polariton
interaction in the fundamental modes, Umn the interactions in
excited modes, Kn the interactions between the fundamental
and excited modes, and Jn describes the renormalization of
the Josephson tunneling due to the interaction between the
fundamental and excited modes. The parameters entering into
the Hamiltonian (6) can be calculated by using the wave
functions of localized polariton modes:

E0(n) =
∫

d2rf ∗
1,2(n)(r)

[
− h̄2

2m
� + Vext(r)

]
f1,2(n)(r), (10)

J0 =
∫

d2rf ∗
1,2(r)

[
− h̄2

2m
� + Vext(r)

]
f2,1(r), (11)

U0 =
∫

d2r

∫
d2r

′
f ∗

1,2(r)f ∗
1,2(r

′
)V (r,r

′
)f1,2(r

′
)f1,2)(r)

= g

∫
d2r|f1(2)(r)|4, (12)

Unm = g

∫
d2r|fm(r)|2|fn(r)|2, (13)

�0(n) = g

∫
d2rf ∗

1σ,2σ (nσ )(r)�(r)f1−σ,2−σ (n−σ )(r), (14)

Kn = g

∫
d2r|f1,2(r)fn(r)|2, (15)

Jn = g

∫
d2rf ∗

1 (r)f2(r)|fn(r)|2. (16)

In the part corresponding to the excited states Ĥexc the inter-
actions can be treated using the mean-field approximation36

b̂†mσ b̂†nσ b̂nσ b̂mσ = 2〈b̂†mσ b̂mσ 〉b̂†nσ b̂nσ + 〈b̂†mσ b̂†mσ 〉b̂nσ b̂nσ

+〈b̂mσ b̂mσ 〉b̂†nσ b̂†nσ . (17)

In the model under study here, coupling characterized by
constant J0 is present only between spatially localized modes,
whereas the excited states are spatially delocalized and thus
cannot have extrinsic Josephson oscillations. The intrinsic
Josephson oscillations have not such exclusivity and appear
in all modes of the system.

In order to obtain a closed system of dynamical equations
describing interacting multimode PJJ, we write its Keldysh-
Green propagators in the following representation

G̃αβ(t,t
′
) =

(
Ĝαβσσ (t,t

′
) Ĝαβσ−σ (t,t

′
)

Ĝαβ−σσ (t,t
′
) Ĝαβ−σ−σ (t,t

′
)

)
, (18)

where general indices α and β become i or j for the ground
states taking values 1 or 2 as there are two traps. The excited
states are counted by associating m or n with α or β. As
previously indices ±σ denote pseudospin degrees of freedom.
The elements of the above matrix (18) are themselves 2 × 2
block matrices of the form

iĜαβσσ (t,t
′
) =

[
Gαβσσ (t,t

′
) Fαβσσ (t,t

′
)

F̄αβσσ (t,t
′
) Ḡαβσσ (t,t

′
)

]
, (19)
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with its own elements being

Gnmσσ (t,t
′
) = 〈T b̂nσ (t)b̂†mσ (t

′
)〉 (20)

Fnmσσ (t,t
′
) = 〈T b̂nσ (t)b̂mσ (t

′
)〉, (21)

in these two cases and similarly for the remaining correlators.
Time-ordering T in the previous formulas is performed

on the Keldysh contour.37 It appears because of nonadiabatic
switching of the Josephson coupling at initial time. With such
a kind of irreversibility it is not possible to guarantee that
the system will stay in equilibrium for asymptotically large
times.38 Hence, the time contour in the Keldysh formalism
is adapted in that way that the system evolves forwardly to
some finite point on the time axis and then returns backwardly
to the initial state. The Keldysh time ordered product of two
operators, for example, of the operators b̂n and b̂m, reads

〈T [b̂m(t)b̂n(t
′
)]〉=θ (t,t

′
)〈b̂m(t)b̂n(t

′
)〉 + θ (t

′
,t)〈b̂n(t

′
)b̂m(t)〉,

(22)

where θ (t,t
′
) is the Heaviside step function defined on the

Keldysh contour for two arbitrary times t and t
′
in a way that it

is always unity when the first argument is later than the second
one, and zero otherwise. In this sense the first Green function in
the formula (22) is called “greater,” denoted with F>(t,t

′
) and

the second one is “lesser” Green function F<(t,t
′
). They act

only on the forward or the backward Keldysh contour branch.
Using Wigner transformation matrix elements Gαβσσ (t,t

′
)

can be written in terms of center of “mass” and “relative” time
coordinates T = (t + t ′)/2 and τ = t − t ′. We are interested
here in the external and internal Josephson dynamics which are
slower processes than the other ones occurring in the system
so that we can work in the limit τ = 0. Thus, the new matrix
elements Gαβσσ (T ,τ ) only depend on the macroscopical time
T .34 According to the expression (22) we will deal only with
“lesser” functions F<(T ) and G<(T ).

Equations of motion techniques combined with the use of
the mean-field approximation allow us to obtain one closed
system of equations for the Keldysh-Green functions defined
by Eq. (19):

i
dG<

nσnσ

dT
= �nσ F̄<

nσnσ − �̄nσF<
nσnσ − �n(G<

nσn−σ − G<
n−σnσ ), (23)(

i
d

dT
+ ϒnσ − ϒn−σ

)
G<

nσn−σ = 2�nσ F̄<
nσn−σ − 2�̄nσF<

nσn−σ − �n(G<
nσjσ − G<

n−σn−σ ), (24)(
i

d

dT
− 2Enσ − 2ϒnσ

)
F<

nσnσ = 2�̄nσ G<
nσnσ + 2�nσ Ḡ<

nσnσ − �nF
<
nσn−σ , (25)(

i
d

dT
+ 2Enσ + ϒnσ + ϒn−σ

)
F<

nσn−σ = −2(�nσ − �n−σ )G<
nσn−σ − �n(F<

nσnσ + F<
n−σn−σ ), (26)

where n = 3,4, . . . stands for the nth excited level. Dynamics of the fundamental states are given by the following expressions:

i
dA<

j−σ iσ

dT
=

(
E0 + U0G

<
iσiσ + 2

∑
nσ

KnG
<
nσnσ

)
A<

j−σ iσ +
(

J0 + 2
∑
nσ

JnG
<
nσnσ

)
A<

j−σjσ

+i
∑
nσ

(KnB̄
<
j−σ iσ + JnB̄

<
j−σjσ )F<

nσnσ − �0A
<
j−σ i−σ , (27)

with i,j = 1,2, and A,B = G or F (A 	= B). The self-energies
ϒ and � are

−iϒnσ = U ∗ ∑
m

G<
mσmσ + 2Kn(G<

1σ1σ + G2σ2σ
<)

+ 2Jn(G<
1σ2σ + G<

2σ1σ ), (28)

−i�nσ = U ∗

2

∑
m

F<
mσmσ + Kn

2
(F<

1σ1σ + F<
2σ2σ ) + JnF

<
1σ2σ .

(29)

The normal and anomalous self-energies, equations (28)
and (29), represent the energy renormalizations entering in
the diagonal and off-diagonal propagators in the matrix (19)
due to particle-particle interactions. For simplicity we take
them diagonal in the excited level index n neglecting collisions
between particles situated at different reservoir levels, Unm =
U ∗δnm.

The system of equations (23)–(29) is a closed system of
nonlinear first order ordinary differential equations which can
be solved numerically. The corresponding analysis is presented
in the next section.

III. RESULTS AND DISCUSSIONS

We consider a PJJ with parameters similar to those used
in Ref. 25. To estimate polariton-polariton interactions in the
localized modes U0 we consider a Ga-As based structure taking
the exciton Bohr radius aB = 35 Å, the exciton binding energy
EB = 25 meV, and considering the trap with a lateral size
of 50 μm. The system of equations (23)–(29) was analyzed
numerically. All Keldysh Green functions for the reservoir are
initially set to zero, with the exception of those representing
occupancies in the levels.

Their values at T = 0 can be easily found with the help
of the expression (30) knowing the polariton densities and the
fraction of particles out of the condensate, given in the legends
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below. The population of the reservoir modes higher than the
first excited one could be safely unvalued at T = 0 from the
following reasoning. In our model we do not consider density-
density interactions between higher levels (Ref. 34): Unm → 0
when m 	= n. Thus, dynamics on the nth level is autonomous
from the one occurring in the level m. Furthermore, the overlap
integral between nth and ith modes naturally decreases with
n and by formulas (15) and (16) yields quite small values
for Kn and Jn for the modes higher than the first reservoir
one. Inclusion of the last constants and initial populations in
the higher level would eventually give very small quantitative
modification of the ground state oscillations and as such are
side effects not of principal interest.

In cold atoms condensates it was discovered (Ref. 34)
that the interactions with reservoir lead to chaotization of the
Josephson oscillations after initially regular dynamics. The
effect is due to the intensive exchange of particles between the
fundamental states and multimode reservoir with the excited
states. Here we consider time intervals smaller than those
necessary for the transition to the chaotic regime. The reason
is that polaritons have finite lifetimes, and in the regime of
pulsed excitation they will simply disappear before the system
will demonstrate the characteristics of chaos.25

The quantity

ρi(n)(T ) = 1

NT

[G<
i(n)σ+i(n)σ+ (T ) − G<

i(n)σ−i(n)σ−(T )] (30)

describes the circular polarization degree of the state i(n)
where NT = ∑

i,n,σ Giσ iσ + Gnσnσ is the total number of
particles. We consider an external double trap potential created
in such a way that there is a 200 μeV gap between its modes.

For a while, we neglect the extrinsic Josephson coupling
putting J0 = 0 and also Jn = 0 (Fig. 2). Panels (a) and (b)

FIG. 2. (Color online) Panels (a) and (b): profile of the intrinsic
Josephson oscillations of circular polarization degree at the funda-
mental states and its Fourier power spectrum for �0 = 100 μeV.
Panels (c) and (d): profile of the intrinsic Josephson oscillations of
circular polarization degree at the first excited state and its Fourier
power spectrum. Dashed lines correspond to the absence of the
coupling between the fundamental modes and excited states, Kn = 0.
Solid lines correspond to the case Kn = 0.3U0. Total polariton
density is ntot = 1.87 × 1011 cm−2 and the fraction in the reservoir is
nr = 0.10ntot.

show a profile of the oscillations of the circular polariza-
tion degree in the fundamental states corresponding to the
intrinsic Josephson effect and the corresponding Fourier power
spectrum. The dashed line corresponds to the case when the
coupling with the excited states is switched off, while
the solid line accounts for this coupling. One can see that
the introduction of the term Kn renormalizes the frequency
of the oscillations within the ground level. The effect remains
quite weak, as the population fraction in the excited levels
is rather small, about ten percent for the first excited level.
However, an additional beating in the oscillations is present,
visible in Fig. 2(b) as a shoulder in the Fourier spectrum. The
coupling effect becomes more pronounced if one monitors
the intrinsic Josephson dynamics of circular polarization at the
first excited state, shown in panels (c) and (d). The interaction
with the fundamental modes changes the oscillation pattern
of the excited modes radically. The effect is clearly seen
on the panel (d) showing Fourier power spectrum of the
oscillations. Account of the terms Kn leads to the appearance
of higher harmonics in the spectrum. Besides, instead of the
intrinsic Josephson oscillations with zero time average, as
happens when reservoir effects are not treated, here a regime
establishes in which 〈ρi(n)(T )〉 	= 0. Note that in the absence
of coupling Kn the frequencies of the intrinsic oscillations in
the ground state and the reservoir are different [dashed lines
in panels (a) and (c)], although the polarization couplings
are equal: �0 = �n. It is the result of the renormalization
of the oscillation frequency for the fundamental mode due
to nonlinearities, which are negligible in the reservoir where
the number of polaritons is considerably lower. Taking into
account the reservoir-fundamental mode coupling makes the
frequencies of intrinsic Josephson oscillations comparable for
all modes of the system.

Figure 3 illustrates the behavior of the polarization degree
in the MQST regime for the intrinsic Josephson effect, includ-
ing interaction with the reservoir. Contrary to the situation
analyzed in Fig. 2, particle-particle interactions dominate over
Josephson coupling of the fundamental mode. The profiles
of the oscillations of the circular polarization degree for the
fundamental modes are shown in the top part of panel (a).
The solid line corresponds to the case Kn 	= 0 and the dashed
one for Kn = 0. The dashed line shows oscillations with a
single frequency, usual for the MQST regime in the two-mode
PJJ. The introduction of the coupling with the excited level
leads to the appearance of the two additional peaks in the
Fourier spectrum, as is shown on panel (b). As in the regime
of linear Josephson oscillations there is a beating in the time
average of the circular polarization degree. It starts to oscillate
instead of keeping a constant value 〈ρ1(T )〉 	= const . Similar
trends can be seen for the dynamics of the excited level,
illustrated by the lower curves in panel (a) and the thick (blue)
line in panel (b). In Ref. 25 it was found that the transition from
MQST to a regime of free Josephson oscillations occurs when
the finite lifetime of polaritons is taken into account. In present
analysis long lifetimes and strong nonlinearities in the ground
state well protect polaritons from fast decay and this transition.

Finally, we consider the scenario in which two fundamental
modes localized in traps one and two, initially elliptically
polarized, are coupled with each other by means of extrinsic
Josephson tunneling J . It was already pointed out that spatial
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FIG. 3. (Color online) Top of panel (a) shows the polarization
degree of the intrinsic Josephson oscillations in the fundamental mode
for �0 = 20 μeV. Bottom of panel (a) shows the same quantity in the
reservoir. Dashed lines: Kn = 0. Thick/blue and solid/red lines are
calculated for K3 = 0.3U0. Panel (b) shows corresponding Fourier
power spectrum when the interactions are present (red/solid for
the fundamental mode, blue/thick for the reservoir). Total polariton
density is ntot = 1.45 × 1012 cm−2 with the reservoir fraction nr =
0.19ntot.

separation of polarization occurs in this case25 for sufficiently
high polariton densities and circular polarization degrees. In
this regime the dominant polarization component is trapped in
one of the wells (dotted line in lower panel of Fig. 4), while
the other one undergoes Josephson oscillations (dotted line in
the upper part of Fig. 4). The coupling to the excited states
induces an extra pseudospin-conserving exchange of particles
from one well to another, assisted by the coupling term Jn

in Eq. (9). The influence of this term is illustrated in Fig. 4
by solid red and blue lines corresponding to Jn = 0.1U0 and
Jn = 0.3U0. The presence of the reservoir-assisted term results
in the trapping of the minor component which would otherwise
freely oscillate. This transition is provided by the competition
between two effects: the classical Josephson tunneling J

and the reservoir-assisted coupling given by Jn. The major
polarization component remains relatively robust with respect
to the influence of the reservoir-assisted coupling. Note that in
the hypothetical case of positive J the result will be opposite
to the one considered here: The reservoir-assisted terms will
increase the absolute value of the effective tunneling constant,

FIG. 4. (Color online) Upper part: Josephson oscillations of the
population imbalances between two traps for the minor polarization
component. Lower part: Josephson oscillations of the population
imbalances between two traps for the major polarization component.
J0 = 50 μeV. Dashed line: no reservoir-assisted coupling, Jn = 0.
Red line: J3 = 0.1U0, blue line J3 = 0.2U0. Total polariton density in
the minor polarization component is n−σ

tot = 2.43 × 1011 cm−2 with
the reservoir fraction n−σ

r = 0.04n−σ
tot and nσ

tot = 9.41 × 1011 cm−2

with nσ
r = 0.01nσ

tot for the major polarization component.

thus contributing to the destruction of the MQST regime for
the main polarization component.

IV. CONCLUSIONS

In conclusion, we analyzed polarization dynamics in multi-
mode polaritonic Josephson junctions. We have found that the
coupling between fundamental and excited modes changes
the patterns of intrinsic and extrinsic Josephson oscillations,
leading to the appearance of higher harmonics and transitions
between Josephson and MQST regimes.
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