Showing results 1 to 20 of 58
next >
| Issue Date | Title | Author(s) |
| 2021 | ABCDM : an Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis | Basiri, Mohammad Ehsan; Nemati, Shahla; Abdar, Moloud; Cambria, Erik; Acharya, U. Rajendra |
| 2020 | Anaphora and coreference resolution : a review | Sukthanker, Rhea; Poria, Soujanya; Cambria, Erik; Thirunavukarasu, Ramkumar |
 | 2017 | Bayesian network based extreme learning machine for subjectivity detection | Chaturvedi, Iti; Ragusa, Edoardo; Gastaldo, Paolo; Zunino, Rodolfo; Cambria, Erik |
| 2022 | BiERU: bidirectional emotional recurrent unit for conversational sentiment analysis | Li, Wei; Shao, Wei; Ji, Shaoxiong; Cambria, Erik |
 | 2019 | Can a humanoid robot be part of the organizational workforce? A user study leveraging sentiment analysis | Mishra, Nidhi; Ramanathan, Manoj; Satapathy, Ranjan; Cambria, Erik; Magnenat-Thalmann, Nadia |
| 2019 | Cognitive-inspired domain adaptation of sentiment lexicons | Xing, Frank Z.; Pallucchini, Filippo; Cambria, Erik |
| 2021 | Comment toxicity detection via a multichannel convolutional bidirectional gated recurrent unit | Kumar, J. Ashok; Abirami, S.; Trueman, Tina Esther; Cambria, Erik |
| 2021 | A convolutional stacked bidirectional LSTM with a multiplicative attention mechanism for aspect category and sentiment detection | Kumar, Ashok J.; Trueman, Tina Esther; Cambria, Erik |
| 2022 | Deep-attack over the deep reinforcement learning | Li, Yang; Pan, Quan; Cambria, Erik |
| 2020 | Dialogue systems with audio context | Young, Tom; Pandelea, Vlad; Poria, Soujanya; Cambria, Erik |
| 2019 | Disentangled variational auto-encoder for semi-supervised learning | Li, Yang; Pan, Quan; Wang, Suhang; Peng, Haiyun; Yang, Tao; Cambria, Erik |
| 2022 | Does semantics aid syntax? An empirical study on named entity recognition and classification | Zhong, Xiaoshi; Cambria, Erik; Hussain, Amir |
 | 2021 | Emotion recognition on edge devices: training and deployment | Pandelea, Vlad; Ragusa, Edoardo; Apicella, Tommaso; Gastaldo, Paolo; Cambria, Erik |
| 2020 | End-to-end latent-variable task-oriented dialogue system with exact log-likelihood optimization | Xu, H.; Peng, Haiyun; Xie, H.; Cambria, Erik; Zhou, L.; Zheng, W. |
 | 2014 | Enhancing business intelligence by means of suggestive reviews | Qazi, Atika; Raj, Ram Gopal; Tahir, Muhammad; Cambria, Erik; Syed, Karim Bux Shah |
| 2017 | Ensemble application of ELM and GPU for real-time multimodal sentiment analysis | Tran, Ha-Nguyen; Cambria, Erik |
 | 2022 | Ensemble hybrid learning methods for automated depression detection | Ansari, Luna; Ji, Shaoxiong; Chen, Qian; Cambria, Erik |
| 2020 | Extracting time expressions and named entities with constituent-based tagging schemes | Zhong, Xiaoshi; Cambria, Erik; Hussain Amir |
| 2019 | Fuzzy commonsense reasoning for multimodal sentiment analysis | Chaturvedi, Iti; Satapathy, Ranjan; Cavallari, Sandro; Cambria, Erik |
| 2022 | Gender-based multi-aspect sentiment detection using multilabel learning | Kumar, J. Ashok; Trueman, Tina Esther; Cambria, Erik |