Academic Profile : Faculty

Prof Srinivasan Madhavi
Executive Director, Energy Research Institute @NTU (ERI@N)
President's Chair in Sustainability
Professor, School of Materials Science & Engineering
Executive Director, Energy Research Institute @ NTU (ERI@N)
Email
External Links
Journal Articles
(Not applicable to NIE
staff as info will be
pulled from PRDS)
(Not applicable to NIE
staff as info will be
pulled from PRDS)
Highly Cited:
Chen, J. S., Tan, Y. L., Li, C. M., Cheah, Y. L., Luan, D., Madhavi, S., ... Lou, X. W. (2010). Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. Journal of the American Chemical Society, 132(17), 6124–6130. doi: 10.1021/ja100102y
Zhang, L., Wu, H. B., Madhavi, S., Hng, H. H., & Lou, D. X. W. (2012). Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. Journal of the American Chemical Society, 134(42), 17388–17391. doi: 10.1021/ja307475c
Wang, Z., Luan, D., Madhavi, S., Hu, Y., & Lou, D. X. W. (2012). Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy & Environmental Science, 1, 5252-5256. doi: 10.1039/C1EE02831F
Aravindan, V., Gnanaraj, J., Lee, Y.-S., & Madhavi, S. (2014). Insertion-type electrodes for nonaqueous Li-ion capacitors. Chemical Reviews, 114(23), 11619–11635. doi: 10.1021/cr5000915
Peng, S., Li, L., Han, X., Sun, W., Madhavi, S., Mhaisalkar, S. G., ... Ramakrishna, S. (2014). Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angewandte Chemie International Edition, 53(46), 12594-12599. doi: 10.1002/anie.201408876
Aravindan, V., Lee, Y.-S., & Madhavi, S. (2015). Research progress on negative electrodes for practical Li-ion batteries : beyond carbonaceous anodes. Advanced Energy Materials, 5(13). doi: 10.1002/aenm.201402225
Peng, S., Li, L., Tan, H., Cai, R., Shi, W., Li, C., ... Yan, Q. (2014). MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Advanced Functional Materials, 24(15), 2155-2162. doi: 10.1002/adfm.201303273
Shi, W., Zhu, J., Sim, D. H., Tay, Y. Y., Lu, Z., Zhang, X., ... Yan, Q. (2011). Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 10, 3422-3427. doi: 10.1039/C0JM03175E
Wang, L. P., Yu, L., Wang, X., Madhavi, S., & Xu, Z. J. (2015). Recent developments in electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 18, 9353-9378. doi: 10.1039/C4TA06467D
Peng, S., Li, L., Li, C., Tan, H., Cai, R., Yu, H., ... Yan, Q. (2013). In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chemical Communications, 86, 10178-10180. doi: 10.1039/C3CC46034G
Click here for more publications.
Recent Publication:
Roy, J. J., Cao, B., & Madhavi, S. (2021). A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere, 282, 130944. doi: 10.1016/j.chemosphere.2021.130944
Roy, J. J., Rarotra, S., Krikstolaityte, V., Zhuoran, K. W., Cindy, Y. D. I., Tan, X. Y., ... & Srinivasan, M. (2021). Green recycling methods to treat lithium‐ion batteries e‐waste : a circular approach to sustainability. Advanced Materials, 2103346. doi: 10.1002/adma.202103346
Lv, C., Zhou, X., Zhong, L., Yan, C., Srinivasan, M., Seh, Z. W., ... & Yan, Q. (2021). Machine learning : an advanced platform for materials development and state prediction in lithium‐ion batteries. Advanced Materials, 2101474. doi: 10.1002/adma.202101474
Verma, V., Kumar, S., Manalastas Jr, W., & Srinivasan, M. (2021). Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Letters, 6(5), 1773-1785. doi: 10.1021/acsenergylett.1c00393
Yuan, D., Zhao, J., Ren, H., Chen, Y., Chua, R., Jie, E. T. J., ... & Srinivasan, M. (2021). Anion texturing towards dendrite‐free Zn anode for aqueous rechargeable batteries. Angewandte Chemie, 133(13), 7289-7295. doi: 10.1002/anie.202015488
Chen, J. S., Tan, Y. L., Li, C. M., Cheah, Y. L., Luan, D., Madhavi, S., ... Lou, X. W. (2010). Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. Journal of the American Chemical Society, 132(17), 6124–6130. doi: 10.1021/ja100102y
Zhang, L., Wu, H. B., Madhavi, S., Hng, H. H., & Lou, D. X. W. (2012). Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. Journal of the American Chemical Society, 134(42), 17388–17391. doi: 10.1021/ja307475c
Wang, Z., Luan, D., Madhavi, S., Hu, Y., & Lou, D. X. W. (2012). Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy & Environmental Science, 1, 5252-5256. doi: 10.1039/C1EE02831F
Aravindan, V., Gnanaraj, J., Lee, Y.-S., & Madhavi, S. (2014). Insertion-type electrodes for nonaqueous Li-ion capacitors. Chemical Reviews, 114(23), 11619–11635. doi: 10.1021/cr5000915
Peng, S., Li, L., Han, X., Sun, W., Madhavi, S., Mhaisalkar, S. G., ... Ramakrishna, S. (2014). Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angewandte Chemie International Edition, 53(46), 12594-12599. doi: 10.1002/anie.201408876
Aravindan, V., Lee, Y.-S., & Madhavi, S. (2015). Research progress on negative electrodes for practical Li-ion batteries : beyond carbonaceous anodes. Advanced Energy Materials, 5(13). doi: 10.1002/aenm.201402225
Peng, S., Li, L., Tan, H., Cai, R., Shi, W., Li, C., ... Yan, Q. (2014). MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Advanced Functional Materials, 24(15), 2155-2162. doi: 10.1002/adfm.201303273
Shi, W., Zhu, J., Sim, D. H., Tay, Y. Y., Lu, Z., Zhang, X., ... Yan, Q. (2011). Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 10, 3422-3427. doi: 10.1039/C0JM03175E
Wang, L. P., Yu, L., Wang, X., Madhavi, S., & Xu, Z. J. (2015). Recent developments in electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 18, 9353-9378. doi: 10.1039/C4TA06467D
Peng, S., Li, L., Li, C., Tan, H., Cai, R., Yu, H., ... Yan, Q. (2013). In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chemical Communications, 86, 10178-10180. doi: 10.1039/C3CC46034G
Click here for more publications.
Recent Publication:
Roy, J. J., Cao, B., & Madhavi, S. (2021). A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere, 282, 130944. doi: 10.1016/j.chemosphere.2021.130944
Roy, J. J., Rarotra, S., Krikstolaityte, V., Zhuoran, K. W., Cindy, Y. D. I., Tan, X. Y., ... & Srinivasan, M. (2021). Green recycling methods to treat lithium‐ion batteries e‐waste : a circular approach to sustainability. Advanced Materials, 2103346. doi: 10.1002/adma.202103346
Lv, C., Zhou, X., Zhong, L., Yan, C., Srinivasan, M., Seh, Z. W., ... & Yan, Q. (2021). Machine learning : an advanced platform for materials development and state prediction in lithium‐ion batteries. Advanced Materials, 2101474. doi: 10.1002/adma.202101474
Verma, V., Kumar, S., Manalastas Jr, W., & Srinivasan, M. (2021). Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Letters, 6(5), 1773-1785. doi: 10.1021/acsenergylett.1c00393
Yuan, D., Zhao, J., Ren, H., Chen, Y., Chua, R., Jie, E. T. J., ... & Srinivasan, M. (2021). Anion texturing towards dendrite‐free Zn anode for aqueous rechargeable batteries. Angewandte Chemie, 133(13), 7289-7295. doi: 10.1002/anie.202015488
Web of Science
Scopus