Academic Profile : Faculty

xyling_1_2.JPG picture
Prof Ling Xing Yi
Professor, School of Chemistry, Chemical Engineering and Biotechnology
Professor, School of Chemical and Biomedical Engineering
Professor, Lee Kong Chian School of Medicine (Courtesy Appointment)
Xing Yi Ling obtained her Bachelor Degree of Chemical Engineering, 1st Class Honors from the University of Adelaide, Australia in year 2000. She received her Master Degree of Chemical Engineering from the National University of Singapore (NUS) and Institute of Materials Research & Engineering (IMRE) in September 2004. She pursued her Ph.D research under the supervision of Prof. David Reinhoudt and Prof. Jurriaan Huskens at the University of Twente, Netherlands. In October 2008, she received her PhD degree, with thesis entitled “From Supramolecular Chemistry to Nanotechnology: Assembly of 3D Nanostructures”. She was awarded the 2009 IUPAC Young Chemist award for her PhD research. In May 2009, she joined Prof. Peidong Yang at the University of California, Berkeley for postdoctoral research under the Rubicon fellowship from the Netherlands Organization for Scientific Research (NWO, NL). Xing Yi Ling joined CBC, NTU in July 2011.
The research programs in our laboratory combine chemistry, nanotechnology, and materials science approaches to develop functional nanostructures with novel catalysis, plasmonic and sensing applications. Our research activities involve nanoparticle synthesis, surface chemistry, self-assembly, nanopatterning, nanofabrication, and materials and device characterization.

Nanostructures for optimal solar energy conversion
The amount of solar energy striking the earth’s surface in one hour is enough to power human activity for one year. Hence, solar energy provides one of the best options to sustain human civilization. An efficient photosystem is able (1) to absorb a large amount of broadband solar energy at full solar spectrum, (2) convert photons into electron-hole pairs efficiently, and (3) perform catalysis reaction to produce fuel at high yield. Currently, most photocatalysts suffer from low reaction efficiency. The main goal in this project is to design nanostructures with artificial photosynthesis properties to achieve high solar fuel conversion. Our strategy is focused on fabricating well-defined nanostructures by combining bottom-up self-assembly and top-down nanofabrication techniques. Important information will be gained to drive the solar-to-fuel photocatalysis towards commercialization and to reduce human’s dependence on non-renewable fossil fuel.
  • A portable scent screening system for food freshness monitoring
  • FeCANS: Feedback-Controlled Automated Nanoparticle Synthesis System
  • IDMxS - Molecular (Metal Nanoparticle Spectroscopic Detection Systems)
  • IDMxS - Molecular Thrust
  • IDMxS - Visiting and Travel
  • Innovative Nanotechnology-based Platforms for Catalytic and Sensing Applications
  • Institute for Digital Molecular Analytics and Science (IDMxS)
  • Sniffing-SERS Platform That Recognizes Disease-Related Breath Volatile Organic Compounds
  • Surface-Enhanced Raman Scattering (SERS)-Based Sensor for Real-time and On-site Monitoring of Industrial Gases and Volatile Organic Compounds (VOCs)
  • Surface-enhanced Raman spectroscopy (SERS) sensor for food contaminant analysis