Academic Profile : No longer with NTU

Assoc Prof Chew Jia Wei.JPG picture
Assoc Prof Chew Jia Wei
Associate Professor, School of Chemistry, Chemical Engineering and Biotechnology
External Links

Ph.D., Chemical Engineering, University of Colorado at Boulder
Experimental investigation on the impact of polydispersity on fluidized bed systems.
Advisors: Prof. Christine Hrenya and Dr. Ray Cocco.
AIChE Particle Technology Forum George Klinzing Best Ph.D. Award, 2013.

M.Eng., Chemical Engineering, National University of Singapore
Experimental investigation on the applicability of Focussed Beam Reflectance Method (FBRM) in the control of cooling crystallization.
Advisors: Prof. Reginald B.H. Tan, Dr. Simon N. Black and Dr. Ann Chow.

B.Eng., Chemical Engineering, National University of Singapore
University of Illinois at Urbana-Champaign
Spent two semesters at University of Illinois under an Undergraduate Exchange Program.


Associate Chair (Students) and Director of Outreach, Nanyang Technological University, Singapore – 2016 - date
Assistant Professor, Nanyang Technological University, Singapore – 2013 - date
Research Scientist, MEMC Electronic Materials Inc., R&D, Pasadena, TX – 2011- 2013
Intern, Particulate Solid Research, Inc. (PSRI), Chicago, IL – 2009
Chemist, GlaxoSmithKline (GSK), Technical Development, Singapore – 2007
Research Officer, Institute of Chemical and Engineering Sciences (ICES), Crystallization and Particle Sciences, Singapore - 2004-2006
Intern, ExxonMobil Chemical Operations Pte Ltd, Singapore Chemical Plant - 2003


Sabic Young Professional Award, American Institute of Chemical Engineers (AIChE) Particle Technology Forum (PTF), 2017
Singapore Youth Award, National Youth Council, 2015
Best PhD Award, American Institute of Chemical Engineers (AIChE) Particle Technology Forum (PTF), 2013
Fluidized bed technology represents an important industrial application, spanning energy production, chemical synthesis, and pharmaceutical processes, among others. However, due in part to the limitations of measurement techniques, processes employing particulate flows often operate below design capacity, and operations are generally based on experience rather than theory. Thus, my research focuses on the important need for the development of measurement and/or analytical solutions for understanding and diagnostic purposes. Another area of research is scaling analysis of fluidized bed systems to develop design heuristics. In fluidized bed systems an added complexity involves instabilities that have to be included in a comprehensive model. To date, the prediction of the characteristic instability length (e.g., the bubble or cluster size) remains elusive, despite its importance in enhancing our comprehension of various phenomena (e.g., species segregation and clustering) in polydisperse fluidized beds. To this end, systematic scaling analysis is expected to be useful in the design and optimization of fluidized bed systems.

Membrane technology also spans wide-ranging applications, such as water purification, gas separation, and dialysis. However, optimal performance remains elusive due inevitably to concentration polarization and fouling. Specifically for membrane distillation, although rigorous equations have been developed, the inability to account for the wide spectrum of pore sizes of the membrane and/or biofouling layer inhibits the use of such models for predicting the performance. In particular, membrane distillation enables the production of potable water using waste heat from industrial processes, thus makes for a promising Green Technology. Hence, one area of my research will be towards developing new techniques for characterizing pore sizes (such as evapoporometry), which is expected to lead to a better understanding and optimization of membrane processes. Another thrust involves study of an integrated hybrid process comprising a fluidized bed and a membrane for water purification. More specifically, the addition of particles to a tubular membrane module has been shown to significantly enhance the water permeation flux due to promoting turbulence. For the system to become a feasible and reliable method for separations, further enhancement of performance is warranted.
  • RGE-NTU Sustainable Textile Research Centre
  • RGE-NTU Sustainable Textile Research Centre (PI- Dalton Tay)
  • RGE-NTU Sustainable Textile Research Centre (PI: Prof Hu Xiao)
US 2019/0226971 A1: Method And Arrangement For Determining At Least One Pore-Related Parameter Of A Porous Structure (2021)
Abstract: In the present invention, a method for determining at least one pore-related parameter of a porous structure is provided. In a preferred embodiment, an enhanced evapoporometry (EP) technique is provided to determine pore size distribution of continuous pores of a porous structure. In this enhanced EP technique, a volatile liquid, such as isopropoyl alcohol or water, is supplied to one side of a porous structure in order to enable the volatile liquid to penetrate and saturate the porous structure through capillary force. Thereafter, an immiscible non-volatile liquid, such as glycerol, mineral oils, silicon oils or hydrophilic ionic liquid, is supplied to the one side of the porous structure. As the volatile liquid evaporates progressively from the filled pores, the emptied pores may be immediately filled by the non-volatile liquid drawn upwards by capillary action. This prevents formation of a t-layer formed from the adsorption of vapour emanating from the volatile liquid that is used to saturate the pores.

US 2019/0041313 A1: Method And Arrangement For Determining At Least One Pore-Related Parameter Of A Porous Structure (2021)
Abstract: In various embodiments, a method for determining at least one pore-related parameter of a porous structure is provided. The method includes supplying a volatile liquid into a chamber. The method also includes coating a first surface of the porous structure with an evaporation preventing substance. The method further includes placing the coated porous structure within the chamber. The method additionally includes determining an effective mass of the chamber over a period of time. The method also includes determining the at least one pore-related parameter of an uncoated second surface of the coated porous structure based on the effective mass determined. The second surface of the porous structure is opposite the first surface of the porous structure.