Academic Profile : Faculty

Prof Wang Li-Lian_1.jpg picture
Prof Wang Li-Lian
Professor, School of Physical & Mathematical Sciences - Division of Mathematical Sciences
External Links
 
Journal Articles
(Not applicable to NIE
staff as info will be
pulled from PRDS)
Highly Cited:
Guo, B. Y., & Wang, L. L. (2004). Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. Journal of Approximation Theory, 128(1), 1-41.

Guo, B. Y., Shen, J., & Wang, L. L. (2006). Optimal spectral-Galerkin methods using generalized Jacobi polynomials. Journal of Scientific Computing, 27(1), 305-322.

Ben-Yu, G., & Li-Lian, W. (2001). Jacobi interpolation approximations and their applications to singular differential equations. Advances in Computational Mathematics, 14(3), 227-276.

Guo, B. Y., Shen, J., & Wang, L. L. (2009). Generalized Jacobi polynomials/functions and their applications. Applied Numerical Mathematics, 59(5), 1011-1028.

Shen, J., & Wang, L. L. (2007). Fourierization of the Legendre–Galerkin method and a new space–time spectral method. Applied Numerical Mathematics, 57(5-7), 710-720.

Ben-Yu, G., Li-Lian, W., & Zhong-Qing, W. (2006). Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM Journal on Numerical Analysis, 43(6), 2567-2589.

Shen, J., & Wang, L. L. (2005). Spectral approximation of the Helmholtz equation with high wave numbers. SIAM Journal on Numerical Analysis, 43(2), 623-644.

Shen, J., & Wang, L. L. (2007). Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains. SIAM Journal on Numerical Analysis, 45(5), 1954-1978.

Shen, J., & Wang, L. L. (2010). Sparse spectral approximations of high-dimensional problems based on hyperbolic cross. SIAM Journal on Numerical Analysis, 48(3), 1087-1109.

Oh, J. H., Kim, J. Y., Kim, W. S., Gong, H. S., & Lee, J. H. (2008). The evaluation of various physical examinations for the diagnosis of type II superior labrum anterior and posterior lesion. The American Journal of Sports Medicine, 36(2), 353-359.

Click here for more publications.

Recent Publication:
Zhou, B., Wang, B., Wang, L. L., & Xie, Z. (2022). A hybridizable discontinuous triangular spectral element method on unstructured meshes and its hp-error estimates. Numerical Algorithms, 1-30.

Sheng, C., Ma, S., Li, H., Wang, L. L., & Jia, L. (2021). Nontensorial generalised hermite spectral methods for PDEs with fractional Laplacian and Schrödinger operators. ESAIM: Mathematical Modelling and Numerical Analysis, 55(5), 2141-2168.

Yang, Z., Wang, L. L., & Gao, Y. (2021). A truly exact perfect absorbing layer for time-harmonic acoustic wave scattering problems. SIAM Journal on Scientific Computing, 43(2), A1027-A1061.

Yang, Y., Wang, L. L., & Zeng, F. (2021). Analysis of a backward Euler-type scheme for Maxwell’s equations in a Havriliak–Negami dispersive medium. ESAIM: Mathematical Modelling and Numerical Analysis, 55(2), 479-506.

Chen, H., Sheng, C., & Wang, L. L. (2021). On explicit form of the FEM stiffness matrix for the integral fractional Laplacian on non-uniform meshes. Applied Mathematics Letters, 113, 106864.

Ying Gu, Wei Xiong, Li-Lian Wang and Jierong Cheng. (2017). Generalizing Mumford-Shah model for multiphase piecewise smooth image segmentation. IEEE Transactions on Image Processing, 26(2), 942-952.

Haixia Dong, Bo Wang, Ziqing Xie and Li-Lian Wang. (2017). An unfitted hybridizable DG method for the Poisson interface problem and its error analysis. IMA Journal of Numerical Analysis, 37, 444-476.

Sheng Chen, Jie Shen and Li-Lian Wang. (2016). Generalized Jacobi functions and their applications to fractional differential equations. Mathematics of Computation, 85(300), 1603-1638.

Zhiguo Yang, Li-Lian Wang, Zhijian Rong, Bo Wang and Baile Zhang. (2016). Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics. Computer Methods in Applied Mechanics and Engineering, 301, 137-163.

Yujian Jiao, Li-Lian Wang and Can Huang. (2016). Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis. Journal of Computational Physics, 305, 1-28.
Google Scholar
Web of Science
Scopus