Academic Profile

Dr. Ranjan Singh is an Associate Professor at the School of Physical and Mathematical Sciences, Division of Physics and Applied Physics since October 2013. He received his B. S. degree in Telecommunications Engineering from Bangalore University in 2001, his M. S. degree in Optoelectronics and Laser Technology from Cochin University of Science and Technology in 2004, and Ph. D. in Photonics from Oklahoma State University in 2009. Before joining NTU, he was a postdoctoral research associate at the Los Alamos National Laboratory from 2009. He is an elected Fellow of the Optical Society (OSA) since 2019 for his pioneering contributions in the field of terahertz science and technology through the development of active metamaterial platforms for sensing, slow light, and communication applications.

His current research interest includes terahertz devices for 6G communications, topological photonics, smart sensors, superconductors, ultrafast optics, terahertz time resolved spectroscopy, micro-nano-quantum photonics, metamaterials, and plasmonics. He has published more than 150 peer reviewed journal papers including Nature, Nature Communications, Light: Science and Applications, Advanced Materials, Applied Physics Letters and Physics Review Letters. His current h-index is 53. Dr. Singh's metamaterial works has been highlighted by several scientific magazines and general public media such as Optics and Photonics news, MRS news, Materials 360 online news, Science news, Nanotechnology now, Photonics Online,, R&D magazine, and Albuquerque daily news.
ranjans_1_2.JPG picture
Assoc Prof Ranjan Singh
Associate Professor, School of Physical & Mathematical Sciences - Division of Physics & Applied Physics

Dr. Singh’s research interests lie at the intersection of electromagnetics, materials, photonics and micro-nanotechnology, with special focus on studying light-matter interaction at the micro-nanoscale. Broadly his research interests are in the areas of nanophotonics, semiconductors, metals, superconductors, plasmonics, metamaterials and nanofabrication. He has been working on design, simulations and fabrication of novel electromagnetic devices including metamaterials, plasmonic resonators and complex oxide transition materials, while simultaneously exploring their applications in information, sensing and energy.
Dr. Singh’s research interests are focused on the development of terahertz, infrared, and optical metamaterial based active and passive plasmonic devices. Metamaterials have been found to possess exotic properties and effects that are beyond the realms of materials that exist in nature. His contributions in the field so far has been in the terahertz region where he demonstrated classical active and passive analogues of electromagnetically induced transparency through near field coupled metamaterial resonators, sensing with metamaterials, chiral metamaterials, ultra-high quality factor Fano resonances, and ultrafast superconductor metamaterials.
Dr. Singh’s recent research focuses on addressing the issue of losses in subwavelength plasmonic metamaterials and investigates new dynamic materials that could be integrated with metamaterial resonators to achieve the active control of the photonic devices with exotic properties.
  • BRain-Efficient Nanomechanical Artificial Intelligence Computing (BRENAIC)

  • Metasurfaces with Low Mode Volume Terahertz Confinement for Sensing, Low Power Switching and Enhanced Light-Matter Interactions

  • Phase-locked Spin Hall Nano Oscillators for Spintronics Wireless Communication

  • Quantum And Topological Nanophotonics
  • Abhishek Kumar, Ankur Solanki, Manukumara Manjappa, Sankaran Ramesh, Yogesh Kumar Srivastava, Piyush Agarwal, Tze Chien Sum, Ranjan Singh. (2020). Excitons in 2D Perovskites for Ultrafast Terahertz Photonic Devices. Science Advances, 6(eaax8821), DOI: 10.1126/sciadv.aax8821.

  • Quanlong Yang, Sergey Kruk, Yuehong Xu, Qingwei Wang, Yogesh Kumar Srivastava, Kirill Koshelev, Ivan Kravchenko, Ranjan Singh, Jiaguang Han, Yuri Kivshar, Ilya Shadrivov. (2019). Mie‐Resonant Membrane Huygens' Metasurfaces. Advanced Functional Materials, 30(4), 1906851.

  • Yogesh Kumar Srivastava, Rajour Tanyi Ako, Manoj Gupta, Madhu Bhaskaran, Sharath Sriram, Ranjan Singh. (2019). Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Applied Physics Letters, 115(15), 151105.

  • Zhang, Li, Yang, Yihao, He, Mengjia, Wang, Hai‐Xiao, Yang, Zhaoju, Li, Erping, Gao, Fei, Zhang, Baile, Singh, Ranjan and Jiang, Jian‐Hua. (2019). Valley Kink States and Topological Channel Intersections in Substrate‐Integrated Photonic Circuitry. Laser & Photonics Reviews, .

  • Song Han, Mikhail V. Rybin, Prakash Pitchappa, Yogesh Kumar Srivastava, Yuri S. Kivshar, Ranjan Singh. (2019). Guided‐Mode Resonances in All‐Dielectric Terahertz Metasurfaces. Advanced Optical Materials, 8(3), 1900959.