Academic Profile : Faculty
Assoc Prof Francesc Xavier Roca Castella
Associate Chair (Research), School of Biological Sciences
Associate Professor, School of Biological Sciences
Email
Controlled Keywords
During my PhD I studied the alternative splicing pathways of CD44 in human breast cells, showing that one of these pathways is de-regulated in ductal carcinomas. I then performed my post-doctoral research in Adrian R. Krainer Lab at Cold Spring Harbor Laboratory, New York (USA). There I investigated the basic mechanisms of 5' splice-site selection in humans using a combination of molecular, genomic and computational approaches. I also functionally characterized splicing mutations causing various genetic diseases, such as metabolic, neurological and muscular disorders. My major finding is the unexpected flexibility in the recognition of 5' splice sites by the U1 small nuclear RNA, which challenged a long-standing dogma and holds important implications for disease-causing splicing mutations and alternative splicing.
My research focuses on the study of the mechanisms of pre-messenger RNA splicing in human cells. Splicing is the process by which introns are excised and exons are joined together, and is essential for the correct expression of genes. The relevance of splicing in the big picture is further illustrated by these two facts: (1) a large fraction (~50%) of point mutations causing human hereditary disease and cancer affect splicing, and other syndromes are caused by alterations of splicing factors; (2) alternative splicing affects >90% of genes in the human genome, is critical to explain the complexity of the human transcriptome and proteome, and contributes to many processes at a cellular and organismal level. The molecular and phenotypic consequences of many disease-causing mutations at splicing elements are not predictable at present, and the mechanisms of alternative splicing and their impact on other biological processes are still largely unknown. These limitations stress the need to further understand the basic mechanisms of splicing. In my lab I address such type of questions by using a combination of computational, molecular and cell biology methods. The two long-term goals of my research are to improve the molecular diagnosis of splicing mutations causing human genetic disease and to elucidate the role of alternative splicing events in their biological contexts. In the future I also hope to identify new therapeutic targets, and/or to develop RNA-based therapies for human diseases.
- Investigating Kindlin-2 alternative splicing and its potential applications in small cell lung cancer treatment
- Characterization of RBM47 as a regulator of alternative splicing and differentiation of human neutrophils
- Exploring Splicing Mechanisms in Patients with Suspected Mendelian Disorders
- Splicing Regulation and Cancer-Related Cellular Functions of Antiviral ZAP Isoforms