Academic Profile : Faculty

Asst Prof Tom James Carney.jpg picture
Asst Prof Tom James Carney
Assistant Professor, Developmental Biology, Lee Kong Chian School of Medicine
Assistant Professor, Lee Kong Chian School of Medicine
House Tutor, Lee Kong Chian School of Medicine (LKCMedicine)
• Harsha MAHABALESHWAR, Postdoctoral Fellow
• MA Jiajia, Research Assistant

Assistant Professor Tom Carney is an Assistant Professor in Lee Kong Chian School of Medicine, Nanyang Technological University, and Co-Principal Investigator at the Institute of Molecular and Cell Biology (IMCB, A*STAR). Previously, he held the position of Assistant Principal Investigator (PI) at IMCB from 2008, and was promoted to Co-PI in 2013. Before moving to Singapore, he was a postdoctoral fellow with Matthias Hammerschmidt at the Max Planck Institute for Immunobiology in Freiburg, Germany, from 2004-2008 through a Max-Planck Postdoctoral Fellowship. In 1999, he was awarded a British Council ORS Award to pursue a PhD degree under the supervision of Robert Kelsh from the Department of Biology and Biochemistry, University of Bath, UK.

Asst Prof Carney’s research career is focused on the developmental program of derivatives of the non-neural ectoderm, namely the neural crest and the epidermis. This work has exploited the advantages of the zebrafish system for in vivo genetic and cellular analyses, and has led to publications in numerous international journals, including Nature, Nature Communications, Current Biology, EMBO Reports, eLife, American Journal of Human Genetics, PLoS Genetics, Development, and Nature Neuroscience.
The Carney lab focuses on epidermal development and disease, with particular interest in the formation and signalling of the dermal-epidermal interface. The epidermis protects against external insults and infection, and thus forms a first line of defence. We are using the advantages of the zebrafish as an experimental model to analyse epidermal development and disease. The zebrafish epidermis shows high conservation with the basal-most layers of mammalian epidermis at the cellular and genetic levels (Figure 1).


  1. The skin consists of both an epithelial epidermis, comprised of keratinocytes, and a matrix-rich dermis, infiltrated by dermal fibroblasts. We have identified the source of these fibroblasts in zebrafish, and are defining their functions in maturation of the matrix and signalling to the epidermis. Furthermore, we are analysing the regulation and roles of signals, derived from the keratinocytes, have on fibroblast behaviour. We are investigating mutants that display blistering of the integument due to loss of signals between the epidermis and dermis (Figure 2).

  2. A number of human inherited diseases lead to blistering of the epidermis due to structural defects at the dermal-epidermal junction. We are currently developing models of these in the zebrafish to observe the mechanics of blister formation in vivo and in real time.

  3. Through our genetic analysis of zebrafish matrix mutants and in collaboration with human geneticists, we have identified and characterised the role of BMP1 in a type of human collagenopathy. We continue to work with human geneticists to determine the genetic basis of rare inherited diseases and develop zebrafish models to understand the underlying mechanisms.

  4. We are interested in the defensive systems of the zebrafish epidermis. We have identified that the zebrafish epidermis contains a newly described intracellular Ribonucleoprotein antibacterial defence system. We are using the powerful imaging and reverse genetics of the zebrafish to define the function and mechanism of these particles.

Research goal

Research goal
  • Examining the altered immunological and molecular landscape of the jaw following bisphosphonate treatment to define mechanisms of bone homeostasis
  • Molecular Mechanisms and Spatio-temporal Control of Epithelial Lumen Formation