View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Quantum tunneling of magnetization in ultrasmall half-metallic V3O4 quantum dots : displaying quantum superparamagnetic state

      Thumbnail
      12. Quantum Tunneling of Magnetization in Ultrasmall Half-Metallic V3O4 Quantum Dots.pdf (678.8Kb)
      Author
      Xiao, Chong
      Zhang, Jiajia
      Xu, Jie
      Tong, Wei
      Cao, Boxiao
      Li, Kun
      Pan, Bicai
      Su, Haibin
      Xie, Yi
      Date of Issue
      2012
      School
      School of Materials Science and Engineering
      Version
      Published version
      Abstract
      Quantum tunneling of magnetization (QTMs), stemming from their importance for understanding materials with unconventional properties, has continued to attract widespread theoretical and experimental attention. However, the observation of QTMs in the most promising candidates of molecular magnets and few iron-based compounds is limited to very low temperature. Herein, we first highlight a simple system, ultrasmall half-metallic V3O4 quantum dots, as a promising candidate for the investigation of QTMs at high temperature. The quantum superparamagnetic state (QSP) as a high temperature signature of QTMs is observed at 16 K, which is beyond absolute zero temperature and much higher than that of conventional iron-based compounds due to the stronger spin-orbital coupling of V3+ ions bringing high anisotropy energy. It is undoubtedly that this ultrasmall quantum dots, V3O4, offers not only a promising candidate for theoretical understanding of QTMs but also a very exciting possibility for computers using mesoscopic magnets.
      Subject
      DRNTU::Science::Physics::Atomic physics::Quantum theory
      Type
      Journal Article
      Series/Journal Title
      Scientific reports
      Rights
      © 2012 The Authors. This paper was published in Scientific Reports and is made available as an electronic reprint (preprint) with permission of the authors. The paper can be found at the following official DOI: [http://dx.doi.org/10.1038/srep00755]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
      Collections
      • MSE Journal Articles
      http://dx.doi.org/10.1038/srep00755
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG