Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/84800
Title: Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score
Authors: Ong, Marcus Eng Hock.
Lee Ng, Christina Hui.
Goh, Ken.
Liu, Nan.
Koh, Zhi Xiong.
Shahidah, Nur.
Zhang, Tongtong.
Fook-Chong, Stephanie.
Lin, Zhiping.
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2012
Source: Ong, M. E. H., Lee Ng, C. H., Goh, K., Liu, N., Koh, Z. X., Shahidah, N., et al. (2012). Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score. Critical Care, 16:R108.
Series/Report no.: Critical care
Abstract: Introduction: A key aim of triage is to identify those with high risk of cardiac arrest, as they require intensive monitoring, resuscitation facilities, and early intervention. We aim to validate a novel machine learning (ML) score incorporating heart rate variability (HRV) for triage of critically ill patients presenting to the emergency department by comparing the area under the curve, sensitivity and specificity with the modified early warning score (MEWS). Methods: We conducted a prospective observational study of critically ill patients (Patient Acuity Category Scale 1 and 2) in an emergency department of a tertiary hospital. At presentation, HRV parameters generated from a 5-minute electrocardiogram recording are incorporated with age and vital signs to generate the ML score for each patient. The patients are then followed up for outcomes of cardiac arrest or death. Results: From June 2006 to June 2008 we enrolled 925 patients. The area under the receiver operating characteristic curve (AUROC) for ML scores in predicting cardiac arrest within 72 hours is 0.781, compared with 0.680 for MEWS (difference in AUROC: 0.101, 95% confidence interval: 0.006 to 0.197). As for in-hospital death, the area under the curve for ML score is 0.741, compared with 0.693 for MEWS (difference in AUROC: 0.048, 95% confidence interval: -0.023 to 0.119). A cutoff ML score ≥ 60 predicted cardiac arrest with a sensitivity of 84.1%, specificity of 72.3% and negative predictive value of 98.8%. A cutoff MEWS ≥ 3 predicted cardiac arrest with a sensitivity of 74.4%, specificity of 54.2% and negative predictive value of 97.8%. Conclusion: We found ML scores to be more accurate than the MEWS in predicting cardiac arrest within 72 hours. There is potential to develop bedside devices for risk stratification based on cardiac arrest prediction.
URI: https://hdl.handle.net/10356/84800
http://hdl.handle.net/10220/10171
DOI: http://dx.doi.org/10.1186/cc11396
Rights: © 2012 Ong et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution Licens(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
metadata.item.grantfulltext: open
metadata.item.fulltext: With Fulltext
Appears in Collections:EEE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.