Current approaches on viral infection : proteomics and functional validations
Author
Zheng, Jie
Tan, Boon Huan
Sugrue, Richard J.
Tang, Kai
Date of Issue
2012School
School of Biological Sciences
Version
Published version
Abstract
Viruses could manipulate cellular machinery to ensure their continuous survival and thus become parasites of living organisms. Delineation of sophisticated host responses upon virus infection is a challenging task. It lies in identifying the repertoire of host factors actively involved in the viral infectious cycle and characterizing host responses qualitatively and quantitatively during viral pathogenesis. Mass spectrometry based proteomics could be used to efficiently study pathogen-host interactions and virus-hijacked cellular signaling pathways. Moreover, direct host and viral responses upon infection could be further investigated by activity-based functional validation studies. These approaches involve drug inhibition of secretory pathway, immunofluorescence staining, dominant negative mutant of protein target, real-time PCR, small interfering siRNA-mediated knockdown, and molecular cloning studies. In this way, functional validation could gain novel insights into the high-content proteomic dataset in an unbiased and comprehensive way.
Subject
DRNTU::Science::Biological sciences
Type
Journal Article
Series/Journal Title
Frontiers in microbiology
Rights
© 2012 The Author(s). This paper was published in Frontiers in Microbiology and is made available as an electronic reprint (preprint) with permission of The Author(s). The paper can be found at the following official DOI: [http://dx.doi.org/10.3389/fmicb.2012.00393]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Collections
http://dx.doi.org/10.3389/fmicb.2012.00393
Get published version (via Digital Object Identifier)