View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Chemical and Biomedical Engineering (SCBE)
      • SCBE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Chemical and Biomedical Engineering (SCBE)
      • SCBE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask

      Thumbnail
      Author
      Raman Pillai, Suresh Kumar
      Chan-Park, Mary B.
      Date of Issue
      2012
      School
      School of Chemical and Biomedical Engineering
      Abstract
      The large-scale application of semiconducting single-walled carbon nanotubes (s-SWCNTs) for printed electronics requires scalable, repeateable, as well as noncontaminating assembly techniques. Previously explored nanotube deposition methods include serial methods such as inkjet printing and parallel methods such as spin-coating with photolithography. The serial methods are usually slow, whereas the photolithography-related parallel methods result in contamination of the nanotubes. In this paper, we report a reliable clean parallel method for fabrication of arrays of carbon nanotube-based field effect transistors (CNTFETs) involving shadow mask patterning of a passivating layer of Hafnium oxide (HfO2) over the nanotube (CNT) active channel regions and plasma etching of the unprotected nanotubes. Pure (99%) semiconducting SWCNTs are first sprayed over the entire surface of a wafer substrate followed by a two-step shadow masking procedure to first deposit metal electrodes and then a HfO2 isolation/passivation layer over the device channel region. The exposed SWCNT network outside the HfO2 protected area is removed with oxygen plasma etching. The HfO2 thus serves as both the device isolation mask during the plasma etching and as a protective passivating layer in subsequent use. The fabricated devices on SiO2/Si substrate exhibit good device performance metrics, with on/off ratio ranging from 1 × 101 to 3 × 105 and mobilities of 4 to 23 cm2/(V s). The HfO2/Si devices show excellent performance with on/off ratios of 1 × 102 to 2 × 104 and mobilities of 8 to 56 cm2/(V s). The optimum devices (on HfO2/Si) have an on/off ratio of 1 × 104 and mobility as high as 46 cm2/(V s). This HfO2-based patterning method enables large scale fabrication of CNTFETs with no resist residue or other contamination on the device channel. Further, shadow masking circumvents the need for expensive and area-limited lithography patterning process. The device channel is also protected from external environment by the HfO2 film and the passivated device shows similar (or slightly improved) performance after 300 days of exposure to ambient conditions.
      Type
      Journal Article
      Series/Journal Title
      ACS applied materials & interfaces
      Rights
      © 2012 American Chemical Society.
      Collections
      • SCBE Journal Articles
      http://dx.doi.org/10.1021/am302431e
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG